Новый нейронный процессор. Нейронные процессоры Intel. В чем разница между нейропроцессором и традиционным процессором

Новый нейронный процессор. Нейронные процессоры Intel. В чем разница между нейропроцессором и традиционным процессором

06.04.2019

13.10.2017, ПТ, 15:28, Мск, Текст: Владимир Бахур

Новый флагманский смартфон Huawei Mate 10 Pro с безрамочным дизайном получит новейший «нейронный процессор» Kirin 970, двойную оптику от Leica, Android 8.0 Oreo и умную ручку. И не только.

Huawei научилась приятно удивлять

Блоггер и журналист Эван Бласс (Evan Blass), известный высокой степенью подтверждения публикуемого им инсайда по мобильным гаджетам, выложил на своей странице в социальной сети Twitter ряд новых рендеров смартфона Huawei Mate 10 Pro.

Ряд характеристик смартфона Huawei Mate 10 Pro , но именно из последней публикаций Эвана Бласа стало известно, что новый флагман будет поддерживать стилус с датчиками пространственного положения, позволяющий писать на бумаге с беспроводной передачей заметок в смартфон.

Анонс смартфонов семейства Mate 10 Pro запланирован компанией Huawei на понедельник, 16 октября, на 14:00 по московскому времени. Это подтверждается запланированной на YouTube прямой трансляцией презентации HUAWEI Mate 10 Keynote Live из Мюнхена с участием CEO Huawei Ричарда Ву (Richard Yu).

Умная Bluetooth-ручка, которой, как ожидается, будет комплектоваться Mate 10 Pro, выглядит схоже со стилусом из комплекта Moleskine Smart Writing Set.

Технические подробности

Смартфон Huawei Mate 10 Pro, получивший рабочее имя Blanc («обычный» Mate 10 имеет рабочее название Alps), станет одним из первых на рынке гаджетов, оснащенных впервые мобильным процессором Huawei Hisilicon Kirin 970 с интегрированным сопроцессором искусственного интеллекта (ИИ).

Внешний вид смартфона Huawei Mate 10 Pro

Мобильный чип Kirin 970 представляет собой 8-ядерный 64-битный процессор на базе четырех ядер ARM Cortex-A73 с тактовой частотой 2,4 ГГц и 4 ядер ARM Cortex-A53 с тактовой частотой до 1,8 ГГц. Чип оснащен встроенной 12-ядерной графикой нового поколения Mali-G72 MP12 и рядом вспомогательных сопроцессоров для ускорения специфических вычислительных задач.

Ключевые компоненты мобильного процессора Kirin 970

Чип содержит 5,5 млрд транзисторов, размещенных на кристалле площадью 1 кв. см, и выпускается на производственных мощностях компании TSMC с соблюдением самых прецизионных на сегодняшний день норм 10 нм технологического процесса FinFET.

Новый флагманский процессор Kirin 970 представляет собой «мобильную платформу для решений задач ИИ». В его состав входит так называемый нейронный процессорный модуль (NPU, Neural Processing Unit, NPU) для скоростной обработки задач искусственного интеллекта с минимальным расходом энергии, обеспечивая, по данным Huawei, 25-кратный выигрыш в производительности и в 50 раз более высокую эффективность по сравнению с предшественниками.

В Kirin 970 также интегрирован сотовый модем 4.5G с поддержкой LTE Category 18, агрегации 5CC, 4x4MIMO и 256QAM, что, по заявлению компании, обеспечивает скорость скачивания до 1,2 Гбит/с.

Чип поддерживает одновременную работу двух SIM-карт в режиме LTE, однако смартфон Huawei Mate 10 Pro, как ожидается, будет представлен как в версии Hybrid Dual SIM (Nano-SIM, dual stand-by, один из слотов совмещен с кардридером microSD под карты емкостью до 256 ГБ), так и в версии с одним слотом под карту Nano-SIM.

Kirin 970 обеспечивает аппаратное декодирование 4К-видео со скоростью до 60 кадров в секунду и кодирование 4K-видео со скоростью до 30 кадров в секунду с кодеками H.264 и H.265, и поддержку цветового пространства HDR10. В дополнение, Kirin 970 обеспечивает работу до 4 каналов оперативной памяти LPDDR4X 1866 МГц, оснащен встроенным 32-битным / 384 кГц ЦАП, сенсором Huawei i7 нового поколения и поддержкой сдвоенных камер.

Смартфон Huawei Mate 10 Pro, как ожидается, будет оснащен большим 5,99-дюймовым дисплеем на матрице AMOLED с разрешением 1440х2880 пикселей, соотношением сторон 18:9 и резкостью 546 пикселей на дюйм. Толщина смартфона составляет всего 7,5 мм, при этом он обладает защитой по стандарту IP68, подразумевающему 30-минутное погружение устройства в воду на глубину до 1,5 метров.

Основная двойная камера Mate 10 Pro

Mate 10 Pro будет представлен в версии с 6 ГБ оперативной памяти, и 64 ГБ или 128 ГБ встроенным накопителем. Аппарат оснащается двойной основной камерой, составленной из 20 МП цветного и 12 МП монохромного сенсора, с оптическими f/1.6 системами авторства Leica, оптической стабилизацией изображения, фазовым и лазерным автофокусом, поддержкой HDR и записи видео в форматах 2160p@30fps и 1080p@30/60fps. Фронтальная камера имеет разрешение 8 МП.

Смартфон Mate 10 Pro сразу будет представлен под управлением последней версии ОС Android 8.0 (Oreo) с фирменным графическим интерфейсом Huawei EMUI 6.0. Аппарат поддерживает сети Wi-Fi стандартов 802.11 a/b/g/n/ac, Bluetooth 5.0 с профилями A2DP, EDR и LE, навигацию A-GPS, GLONASS, BDS и GALILEO, технологию NFC. Также предусмотрен ИК-порт и разъем стандарта USB 2.0 Type-C.

Встроенная несъемная литий-полимерная батарея смартфона обладает емкостью 4000 мАч.

Умная ручка для Huawei Mate 10 Pro

Несмотря на возможность мгновенной оцифровки записей, сделанных на обычной бумаге, умная ручка, которой, по предварительным данным, будет комплектоваться Mate 10 Pro, не будет работать в качестве стилуса или пера для ввода с сенсорного экрана Huawei Mate 10 Pro, или будет оснащаться для этих целей дополнительной технологией ввода.

Начало продаж и цена

Никакой более-менее внятной информации о сроках начала продаж и цене флагманского смартфона Huawei Mate 10 пока нет, все станет известно уже в понедельник, 16 сентября.

Анонс презентации смартфонов серии Huawei Mate 10

Предварительно сетевые аналитики оценивают стоимость Huawei Mate 10 в Китае на уровне $835, «обычного» Huawei Mate 10 будет стоить порядка $650.

Корпорация IBM преодолела очередную ступень в создании чипа будущих суперкомпьютеров - нейронного чипа, работающего по принципу функционирования человеческого мозга. Особенность такого чипа состоит в том, что он способен к самообучению, а также тратит в сотни тысяч раз меньше энергии, чем обычные микропроцессоры. Новый чип уже может анализировать визуальную информацию, что подтверждается результатами тестирования.

Большинство современных компьютеров устроены по принципу архитектуры фон Неймана . Она основана на совместном хранении данных и команд, при этом внешне они неразличимы: одна и та же информация может становиться данными, командой или адресом в зависимости от способов обращения к ней. Именно такой принцип работы архитектуры фон Неймана и создал ее существенный недостаток - так называемое узкое место (ограничение пропускной способности между процессором и памятью). Процессор постоянно вынужден ждать необходимых данных, потому что память программ и память данных не может быть доступна одновременно: ведь хранятся они на одной и той же шине.

Эта проблема была решена американским программистом Говардом Эйкеном (Howard Aiken), автором гарвардской архитектуры . Она отличается от архитектуры фон Неймана тем, что линии передачи данных и команд в ней физически разделены, что позволяет процессору одновременно читать инструкции и выполнять доступ к данным, а быстродействие компьютера повышается. Несмотря на это, в конце 1930-х годов на конкурсе по разработке ЭВМ для военно-морской артиллерии, объявленном правительством США, из-за простоты реализации победила фон-неймановская архитектура.

Позднее стало возможным создание гибридных систем, сочетающих достоинства обеих архитектур. Однако с развитием программирования умы ученых стала занимать мысль о создании искусственных нейронных систем: соединенных и взаимодействующих между собой процессоров, действующих по принципу функционирования нервных клеток живого организма. Особенностью таких систем является то, что они не программируются, а обучаются.

Понятие искусственной нейронной сети возникло при изучении функционирования биологических нейронных сетей – совокупности связанных в нервной системе нейронов, выполняющих специфические физиологические функции. Каждый из нейронов связан с огромным количеством других, место контакта нейронов друг с другом называется синапсом , который служит для передачи нервного импульса между клетками.

Первопроходцами в создании искусственных нейронных сетей стали американцы Уоррен Маккалок (Warren McCulloch) и Уолтер Питтс (Walter Pitts). В начале 1940-х годов ученые изобрели модель мозга, в которой упрощенно рассматривали нейроны как устройства, оперирующие двоичными числами. Придуманная ими сеть из электронных «нейронов» теоретически могла выполнять числовые или логические операции любой сложности. Принципиально новые теоретические основания такой модели головного мозга заложили базу для последующего развития нейротехнологий, и следующий шаг не заставил себя ждать.

Уже в 1949 году Дональдом Хеббом (Donald Hebb) был предложен первый работающий алгоритм обучения искусственных нейронных систем, а в 1958 году Фрэнк Розенблатт (Frank Rosenblatt) создал первый нейрокомпьютер «Марк-1» . Этот компьютер был построен на основе перцептрона – нейронной сети, разработанной Розенблаттом тремя годами ранее.

Одно из наиболее перспективных направлений разработки принципиально новых архитектур вычислительных систем тесно связано с созданием компьютеров нового поколения на основе принципов обработки информации, заложенных в искусственных нейронных сетях (НС). Первые практические работы по искусственным нейросетям и нейрокомпьютерам начались еще в 40-50-е годы. Под нейронной сетью обычно понимают совокупность элементарных преобразователей информации, называемых «нейронами», которые определенны образом соединены друг с другом каналами обмена информации «синаптическими связями».

Нейрон , по сути, представляет собой элементарный процессор, характеризующийся входным и выходным состоянием, передаточной функцией (функция активации) и локальной памятью. Состояния нейронов изменяются в процессе функционирования и составляют кратковременную память нейросети. Каждый нейрон вычисляет взвешенную сумму пришедших к нему по синапсам сигналов и производит над ней нелинейное преобразование. При пересылке по синапсам сигналы умножаются на некоторый весовой коэффициент. В распределении весовых коэффициентов заключается информация, хранимая в ассоциативной памяти НС. Основным элементом проектирования сети является ее обучение. При обучении и переобучении НС ее весовые коэффициенты изменяются. Однако они остаются постоянными при функционировании нейросети, формируя долговременную память.

НС может состоять из одного слоя, из двух слоев, из трех и большего числа, однако, как правило, для решения практических задач более трех слоев в НС не требуется.

Число входов НС определяет размерность гиперпространства , в котором входные сигналы могут быть представлены точками или гиперобластями из близко расположенных точек. Количество нейронов в слое сети определяет число гиперплоскостей в гиперпространстве. Вычисление взвешенных сумм и выполнение нелинейного преобразования позволяют определить с какой стороны от той или иной гиперплоскости находится точка входного сигнала, в гиперпространстве.

Возьмем классическую задачу распознавания образов: определение принадлежности точки одному из двух классов. Такая задача естественным образом решается с помощью одного нейрона. Он позволит разделить гиперпространство на две непересекающиеся и невложенные гиперобласти. Реально, входные сигналы в задачах, решаемых с помощью нейросетей, образуют в гиперпространстве сильно вложенные или пересекающиеся области, разделить которые с помощью одного нейрона не возможно. Это можно сделать, только проведя нелинейную гиперповерхность между областями. Ее можно описать с помощью полинома n-го порядка. Однако, степенная функция слишком медленно считается и поэтому очень неудобна для вычислительной техники. Альтернативным вариантом является аппроксимация гиперповерхности линейными гиперплоскостями. Понятно, что при этом точность аппроксимации зависит от числа используемых гиперплоскостей, которая, в свою очередь, зависит от числа нейронов в сети. Отсюда возникает потребность в аппаратной реализации как можно большего числа нейронов в сети. Количество нейронов в одном слое сети определяет ее разрешающую способность. Однослойная НС не может разделить линейно зависимые образы. Поэтому важно уметь аппаратно реализовывать многослойные НС.

Искусственные нейронные сети отличаются удивительными свойствами. Они не требуют детализированной разработки программного обеспечения и открывают возможности решения задач, для которых отсутствуют теоретические модели или эвристические правила, определяющие алгоритм решения. Такие сети обладают способностью адаптироваться к изменениям условий функционирования, в том числе к возникновению заранее непредусмотренных факторов. По своей природе НС являются системами с очень высоким уровнем параллелизма.

В нейрокомпьютерах используются принципы обработки информации, осуществляемые в реальных нейронных сетях. Это принципиально новые вычислительные средства с нетрадиционной архитектурой позволяют выполнять высокопроизводительную обработку информационных массивов большой размерности. В отличие от традиционных вычислительных систем нейросетевые вычислители, аналогично нейронным сетям, дают возможность с большей скоростью обрабатывать информационные потоки дискретных и непрерывных сигналов, содержат простые вычислительные элементы и с высокой степенью надежности позволяют решать информационные задачи обработки данных, обеспечивая при этом режим самоперестройки вычислительной среды в зависимости от полученных решений.

Вообще говоря, под термином "Нейрокомпьютер" в настоящее время подразумевается довольно широкий класс вычислителей. Это происходит по той простой причине, что формально нейрокомпьютером можно считать любую аппаратную реализацию нейросетевого алгоритма от простой модели биологического нейрона до системы распознавания символов или движущихся целей. Нейрокомпьютеры не являются компьютерами в общепринятом смысле этого слова. В настоящее время технология еще не достигла того уровня развития, при котором можно было бы говорить о нейрокомпьютере общего назначения (который являлся бы одновременно искусственным интеллектом). Системы с фиксированными значениями весовых коэффициентов - вообще самые узко специализированные из нейросетевого семейства. Обучающиеся сети более гибки к разнообразию решаемых задач. Таким образом, построение нейрокомпьютера - это каждый раз широчайшее поле для исследовательской деятельности в области аппаратной реализации практически всех элементов НС.

В начале 21-го века, в отличие от 40-50-х годов прошлого столетия, есть объективная практическая потребность научиться делать нейрокомпьютеры, т.е. необходимо аппаратно реализовать довольно много параллельно действующих нейронов, с миллионами фиксированных или параллельно адаптивно модифицируемых связей-синапсов, с несколькими полносвязными слоями нейронов. В то же время технология интегральной электроники близка к исчерпанию своих физических возможностей. Геометрические размеры транзисторов больше нельзя физически уменьшать: при технологически достижимых размерах порядка 1 мкм и меньше проявляются физические явления, незаметные при больших размерах активных элементов - начинают сильно сказываться квантовые размерные эффекты. Транзисторы перестают работать как транзисторы.

Для аппаратной реализации НС необходим новый носитель информации. Таким новым носителем информации может быть свет , который позволит резко, на несколько порядков, повысить производительность вычислений.

Единственной технологией аппаратной реализации НС, способной в будущем прийти на смену оптике и оптоэлектронике, является нанотехнология , способная обеспечить не только физически предельно возможную степень интеграции субмолекулярных квантовых элементов с физически предельно возможным быстродействием, но и столь необходимую для аппаратной реализации НС трехмерную архитектуру.

Длительное время считалось, что нейрокомпьютеры эффективны для решения так называемых неформализуемых и плохо формализуемых задач, связанных с необходимостью включения в алгоритм решения задачи процесса обучения на реальном экспериментальном материале. В первую очередь к таким задачам относилась задача аппроксимации частного вида функций, принимающих дискретное множество значений, т. е. задача распознавания образов .

В настоящее время к этому классу задач добавляется класс задач, иногда не требующий обучения на экспериментальном материале, но хорошо представимый в нейросетевом логическом базисе. К ним относятся задачи с ярко выраженным естественным параллелизмом обработки сигналов, обработка изображений и др . Подтверждением точки зрения, что в будущем нейрокомпьютеры будут более эффективными, чем прочие архитектуры, может, в частности, служить резкое расширение в последние годы класса общематематических задач, решаемых в нейросетевом логическом базисе. К ним, кроме перечисленных выше, можно отнестизадачи решения линейных и нелинейных алгебраических уравнений и неравенств большой размерности; систем нелинейных дифференциальных уравнений; уравнений в частных производных; задач оптимизации и других задач .

В 1965 году Гордон Мур, инженер и основатель Intel, заметил, что каждый год количество транзисторов в новых моделях процессоров удваивалось. Через десять лет он уточнил оценку: к 1975 году количество транзисторов удваивалось каждые два года.

Но бесконечно наращивать количество транзисторов невозможно. Чтобы преодолеть это ограничение, нужен принципиально новый подход.

Нейронные сети

Все современные компьютеры используют архитектуру фон Неймана, что подразумевает перемещение данных в линейной последовательности между центральным процессором и чипами памяти. Данный метод подразумевает строгое выполнение заложенных программных инструкций. Построение нейронных сетей с использованием данной архитектуры возможно, но сопряжено со значительными трудностями. Например, инженерам Google понадобилось для этого 16 000 процессоров . В данном случае, была предпринята попытка эмулировать поведение мозга человека на традиционной архитектуре, вместо того, чтобы смоделировать структуру самого процессора как можно ближе к структуре мозга.

Нейроморфные чипы

Подобно человеческому мозгу, который параллельно решает различные задачи, нейроморфные процессоры откликаются на внешние раздражители аналогичным образом. По ходу поступления новой информации нейроны могут меняться в соответствии с изменениями звуков, изображений и других раздражителей.

Благодаря технологиям распределенной обработки данных задачи решаются иначе, и для работы с большими массивами информации используется значительно меньшее количество процессоров. Кроме того, нейронные сети можно обучать и добиться более эффективной реакции на действия пользователей. Несмотря на то, что новые нейроморфные чипы еще очень далеки от возможностей мозга, они все равно намного более производительны, чем современные компьютеры. До настоящего времени, нейронные сети строились на обычных кремниевых процессорах, но недавно все изменилось: в Китае был создан первый нейроморфный процессор .

Применение

Итак, нейронные сети не программируются в привычном смысле этого слова, они обучаются, следовательно, профессию программиста ждут очень большие перемены. В настоящее время нечто отдаленно похожее можно наблюдать в эвристических алгоритмах, когда компьютер выбирает подходящее решение, хотя однозначная правильность выбранного подхода к решению задачи не доказана.

Помимо потенциальной возможности создания искусственного интеллекта, нейроморфные сети могут применяться для решения различных задач. Например, беспилотные аппараты смогут более эффективно действовать в автономном режиме и принимать решения в связи с постоянно меняющийся обстановкой. Системы жизнеобеспечения, которые лучше анализируют информацию и выдают правильные рекомендации, анализ погоды, управление дорожным движением и многое другое. Нейронные чипы найдут применение даже в медицине, они помогут врачу ставить правильный диагноз на основе анализа всех симптомов пациента и результатов диагностических исследований.

Достижение глобального доминирования основывается на двух основных стратегиях: информационное превосходство и превосходство технологическое. Что касается последнего, то переход к новой общественно-экономической формации постиндустриального общества выдвигает на первый план такие технологии, как генетика и биоинженерия, нанотехнологии и нейроинформатика.

Нейроинформатика, будучи основанной на принципах и механизмах функционирования мозга, способна обеспечить как технологическое, так и информационное превосходство. Неслучайно сегодня нейрокомпьютеры занимают одно из важнейших мест среди перспективных разработок вооружения и военной техники.

Известно несколько реализаций в кристаллах нейропроцессоров различных моделей нейронных сетей. Одни работают лучше, другие хуже, но всех их объединяет одно - стремление проникнуть в тайны человеческого мозга.

В каталогах продукции фирмы Intel особняком стоят две разработки, выполненные по заказу DARPA (Defense Advanced Research Projects Agency): аналоговый нейропроцессор i80170NX и цифровой - i80160NC или Ni1000 .

Нейропроцессоры являются сердцем нового поколения вычислительной техники - нейрокомпьютеров. Основой функционирования подобных машин является моделирование способов переработки информации нервной системой и головным мозгом человека. Считается, что начало этому направлению было положено в 1943 году, когда американские ученые У. Маккалок и У. Питтс опубликовали статью, в которой нейроны - клетки нервной системы - рассматривались как простейшие логические устройства .

Искусственный нейрон Маккалока и Питтса в первом приближении имитирует свойства биологического нейрона. На вход такого искусственного нейрона поступает множество сигналов, каждый из которых является выходом другого нейрона. Каждый входной сигнал умножается на некоторый коэффициент, отражающий вклад, вносимый этим сигналом в значение выходного сигнала нейрона. Сигналы, поступившие на нейрон и помноженные на соответствующие им коэффициенты, суммируются, и если суммарный сигнал больше некоторого заданного порога срабатывания, нейрон активизируется и выдает на связанные с ним нейроны единичный импульс. Изменяя соответствующим образом значения весовых коэффициентов на входах нейронов, можно получить на выходе сети требуемое значение. Процесс настройки весовых коэффициентов называется обучением нейронной сети. По аналогии с обучением человека, обучение нейронной сети может проходить с учителем или самостоятельно, путем самоорганизации.

Простота предложенной модели нейрона воодушевила многочисленных исследователей, стремившихся проникнуть в тайны человеческого мозга.

В конце 1950-х годов, американец Ф. Розенблатт, пытаясь объяснить работу биологического нейрона, предложил его модель - персептрон. В начале 60-х математик Р. Блок сформулировал теорему распознавания, а радиоинженер Б. Уидроу разработал и воплотил в жизнь первую искусственную нейронную сеть, известную в литературе под названием «Адалайн». Он же создал и алгоритм, обучающий ее распознавать образы.

Однако вплоть до середины 80-х нейросети не получали дальнейшего развития. Сказалось отставание практики от теории и несовершенство технологий. Применявшиеся программные модели не могли раскрыть всех достоинств нейронных сетей, а создание их аппаратной реализации требовало колоссальных затрат при тогдашнем уровне технологий. Более перспективными считались традиционные большие ЭВМ (мэйнфреймы), но быстрый рост числа очень сложных задач заставил вновь обратиться к искусственным нейронным сетям.

Компания Intel одной из первых среди гигантов компьютерной индустрии серьезно заинтересовалась возможностями искусственных нейронных сетей. Работы по этой теме были начаты в 1988 году. В следующем году уже был представлен первый рабочий образец нейропроцессора i80170NX . Годом позже Intel (совместно с фирмой Nestor и при финансовой поддержке DARPA) приступила к разработке цифрового нейрочипа Ni1000, который был анонсирован в 1993 году, как i80160NC.

Нейросетевой процессор i80170NX ETANN (Electrically Trainable Analog Neural Network) является уникальной в своем роде микросхемой, предназначенной для решения задач распознавания образов . Процессор эмулирует работу 64 биологических нейронов . Каждый нейрон процессора имеет 128 синапсов (входов). В свою очередь, каждый синапс соединен с входом процессора посредством некоторого устройства, позволяющего задать коэффициент, характеризующего силу этой связи, что полностью соответствует модели, предложенной еще У. Маккалоком и У. Питтсом. Данные на входе и выходе процессора аналоговые, но функции управления, установки и чтения весовых коэффициентов - цифровые.

Нейрочип полностью совместим по уровням рабочих сигналов с микросхемами CMOS и ТТL. Входной сигнал на нейроне может изменяться от 0 до 2,8 В. Веса синапсов также представлены напряжением в диапазоне от -2,5 до 2,5 В. Изготовлен процессор по лицензионной технологии Intel - CHMOS III EEPROM .

Высокопараллельная архитектура, свойственная нейронным сетям, и ряд особенностей построения процессора позволили добиться быстродействия 2 млрд. операций в секунду! i80170NX является сердцем нейронной платы-акселератора для ПЭВМ. Производительность такой платы с восемью процессорами составляет 16 млрд. операций в секунду! До последнего времени такая производительность была свойственна только лишь суперкомпьютерам!

Краткие технические данные процессора следующие:

  • производительность 2 млрд. оп./с;
  • способен распознавать 300 тысяч 128-разрядных образа в секунду;
  • моделирует 64 нейрона;
  • поддерживает модели нейронной сетей Хопфилда, многослойного персептрона и Madaline III.

Простота создания приложений на i80170NX обеспечивается наличием мощных средств разработки. Для проектирования нейронных сетей поставляется пакет iNNTS (Intel Neural Network Training System) и EMB (ETANN Multi-Chip Board). В комплект поставки входит и одна из программ моделирования и изучения искусственных нейронных сетей iBrainMaker фирмы California Scientific Software или iDynaMind фирмы NeuroDynamX. Обе программы имеют удачный пользовательский интерфейс и могут использоваться для демонстрации свойств и возможностей нейронных сетей. Для той же категории пользователей, что решит самостоятельно заняться разработкой моделей нейронных сетей, есть целая библиотека функций по управлению нейрочипом - Training System Interface Lib (TSIL).

Другая разработка Intel в области искусственных нейронных сетей - процессор i80160NC. Его основное отличие от i80170NX в том, что он полностью цифровой.

Технические данные i80160NC:

  • внутренняя память: 1 тысяча 256-разрядных образов;
  • тип памяти: Flash EPROM;
  • максимальное число классов: 64;
  • скорость распознавания: 33 тысячи образов в секунду на частоте 33 МГц.
  • Как и i80170NX, процессор i80160NC поставляется на плате нейросетевого акселератора для ПЭВМ. Характеристики платы следующие:
  • системная шина ISA;
  • рабочая частота 33 МГЦ;
  • скорость обмена по шине 2 Мбит/с;
  • мощность 8 Вт.

Поддерживается следующее программное обеспечение:

  • MS Windows 3.1;
  • MS Excel 4.0;
  • MS Visual C++, Borland C++.
  • Вместе с платой поставляются следующие средства разработки приложений:
  • Ni1000 Assembler;
  • Ni1000 Emulator Lib.;
  • Ni1000 HardWare Lib.

Программа Ni1000 Emulator позволяет отлаживать код приложений без использования процессора, а по окончании процесса отладки сразу перейти к работе на аппаратуре.

Основные характеристики процессоров i80170NX и i80160NC приведены в табл. 1.

Процессор Ni1000 разрабатывался как вариант сопроцессора для задач распознавания образов и предназначался для встраивания в высокопроизводительные портативные сканеры. Применение нейросетевой технологии позволило добиться значительных результатов в решении задач такого класса. Так, если RISC-процессоры AMD29000 и i80860 позволяют решать некоторые задачи в 2-5 раз быстрее, то с использованием i80160NC скорость решения аналогичных задач может увеличиться в 100 и даже 1000 раз! Такое быстродействие позволило применить этот класс процессоров для решения сложнейшей задачи - распознавания отпечатков пальцев.

Что же сулит разработчикам и пользователям вычислительной техники появление на рынке столь мощного семейства процессоров? Сейчас существует ряд задач очень высокой сложности. К ним относится прогнозирование погоды, управления воздушным движением через Атлантику с учетом перемещения воздушных масс, компьютерное моделирование ядерных взрывов и множество других. До последнего времени такие задачами пытались решать на суперкомпьютерах, однако стоимость подобной техники весьма внушительна. На рис. 2 показано положение различных супер-ЭВМ в зависимости от их стоимости и производительности . Хорошо видно, что i80160NC - бесспорный лидер. Он далеко позади оставляет таких монстров, как Cray и Cyber.

Новые горизонты открываются для разработчиков систем искусственного интеллекта. Появление подобных процессоров означает прорыв в решении задач распознавания образов, а значит, и распознавания рукописного текста, речи и пр. Так, японскими специалистами было показано, что с использованием нейронных сетей можно осуществлять синхронный перевод с японского языка на английский.

Рубеж, которого удалось достигнуть специалистам Intel в моделировании нейронных сетей, можно представить схемой, подобной приведенной на рис. 3 , где сравниваются нейронные сети живых организмов и моделируемые с помощью процессоров Intel.

Разработчики нейропроцессора в шутку называют свое детище не иначе, как «сверхзвуковой слизняк».

Мечта человека о создании вычислительной машины, способной превысить или хотя бы сравняться с интеллектуальными возможностями человека, остается еще очень далекой. Вместе с тем можно с уверенностью сказать, что работы Intel по созданию искусственных нейронных сетей приблизили тот момент, когда искусственный мозг станет сердцем настольного компьютера.

С момента выхода процессоров Intel в мире появилось множество моделей нейровычислителей, с некоторыми из них можно ознакомиться в табл. 2.

К настоящему времени разработано большое число всевозможных плат ускорителей и специализированных нейровычислителей. Нейронные ЭВМ уже находят применение в различных сферах деятельности человека. В США действует система по обнаружению пластиковой взрывчатки в багаже авиапассажиров на основе нейронной сети. Большое внимание уделяется вопросу применения нейронных процессоров в системах коммутации в сетях передачи данных. Существуют системы аутентификации личности по отпечаткам пальцев с использованием нейросетей. В литературе описано и множество других случаев успешного применения нейронных процессоров.

Характерной особенностью нового витка развития средств вычислительной техники является то, что он несет принципиальные изменения в мир информатики. С утверждением в обществе следующего поколения вычислительной техники отпадет надобность в профессии программиста, а его место займет специалист по обучению нейрокомпьютера. Вводу в эксплуатацию каждого нового компьютера будет предшествовать его обучение. Не исключено, что возникнет необходимость в киберпсихологах и воспитателях нейронной ЭВМ. Таким образом, мы с вами живем на переломном этапе в развитии информатики и вычислительной техники, и немалую роль в том, что он настал, сыграли нейронные процессоры фирмы Intel - первые ласточки эры нейронных компьютеров.

Литература

  1. A. Thakoor et al., DARPA Program Review, Dec. 1991, Washington, D. C.
  2. M. Holler, S. Tam, H. Castro, R.Benson, «An Electrically Trainable Artificial Neural Network (ETANN) with 10240 „Floating Grate“ Synapses», International Joint Conference on Neural Networks, June 1989, Washington, D. C.
  3. Intel, i80170NX Electrically Trainable Analog Neural Network, Intel Corp., June 1991.
  4. Stanly, Jeanette, Introduction to Neural Networks, California Scientific Software, 1990.
  5. Intel, 80170NX Neural Network Technology & Application, Intel Corp., 1992.

Сергей Гриняев



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows