Амплитудно частотная и фазо частотные характеристики. Методика измерения частотных (АЧХ и ФЧХ) характеристик в EWB. Строим АЧХ RC-цепи в программе Proteus

Амплитудно частотная и фазо частотные характеристики. Методика измерения частотных (АЧХ и ФЧХ) характеристик в EWB. Строим АЧХ RC-цепи в программе Proteus

05.04.2019

Известно, что динамические процессы могут быть представлены частотными характеристиками (ЧХ) путем разложения функции в ряд Фурье.

Предположим, имеется некоторый объект и требуется определить его ЧХ. При экспериментальном снятии ЧХ на вход объекта подается синусоидальный сигнал с амплитудой А вх = 1 и некоторой частотой w, т.е.

x(t) = А вх sin(wt) = sin(wt).

Тогда после прохождения переходных процессов на выходе мы будем также иметь синусоидальный сигнал той же частоты w, но другой амплитуды А вых и фазы j:

у(t) = А вых sin(wt + j)

При разных значениях w величины А вых и j, как правило, также будут различными. Эта зависимость амплитуды и фазы от частоты называется частотной характеристикой.

Виды ЧХ:

·

у” « s 2 Y и т.д.

Определим производные ЧХ:

у’(t) = jw А вых е j (w t + j) = jw у,

у”(t) = (jw) 2 А вых е j (w t + j) = (jw) 2 у и т.д.

Отсюда видно соответствие s = jw.

Вывод: частотные характеристики могут быть построены по передаточным функциям путем замены s = jw.

Для построения АЧХ и ФЧХ используются формулы:

, ,

где Re(w) и Im(w) - соответственно вещественная и мнимая части выражения для АФХ.

Формулы получения АФХ по АЧХ и ФЧХ:

Re(w) = A(w) . cos j(w), Im(w) = A(w) . sin j(w).

График АЧХ всегда расположен в одной четверти, т.к. частота w > 0 и амплитуда А > 0. График ФЧХ может располагаться в двух четвертях, т.е. фаза j может быть как положительной, так и отрицательной. График АФХ может проходить по всем четвертям.


При графическом построении АЧХ по известной АФХ на кривой АФХ выделяются несколько ключевых точек, соответствующих определенным частотам. Далее измеряются расстояния от начала координат до каждой точки и на графике АЧХ откладываются: по вертикали - измеренные расстояния, по горизонтали - частоты. Построение АФХ производится аналогично, но измеряются не расстояния, а углы в градусах или радианах.

Для графического построения АФХ необходимо знать вид АЧХ и ФЧХ. При этом на АЧХ и ФЧХ выделяются несколько точек, соответствующих некоторым частотам. Для каждой частоты по АЧХ определяется амплитуда А, а по ФЧХ - фаза j. Каждой частоте соответствует точка на АФХ, расстояние до которой от начала координат равно А, а угол относительно положительной полуоси Re равен j. Отмеченные точки соединяются кривой.

Пример : .

При s = jw имеем

= = = =

По определению, частотная характеристика параметра цепи есть зависимость от частоты отношения комплексной амплитуды отклика к комплексной амплитуде входного гармонического сигнала

H(jω) = Y m /X m .

Таким образом, частотная характеристика есть функция комплексной переменной jω – комплексной частоты, и ее называют комплексной частотной характеристикой (КЧХ), которую в показательной форме можно записать:

H(jω) = Y m /X m =(Y m е j φ y)/ (X m е j φ x) = (Y m /X m)е j φ(ω)

Из записанного выражения следует, что комплексная функция состоит из двух действительных функций:

1. H(ω) = Y m /X m – АЧХ;

2. φ(ω) = φ y - φ x - ФЧХ.

Измерение АЧХ и ФЧХ с помощью генератора и осциллографа слишком трудоемко, значительно проще проводить измерения с помощью измерителя диаграмм Боде, входящего в состав виртуальной электронной лаборатории EWB. Передняя панель и его выводы показаны на рис.1.1.

В режиме измерения АЧХ (Magnitude) на экран выводится график зависимости от частоты отношения U my /U mx , где U my -амплитуда гармонического сигнала по напряжению на выводах OUT - “ВЫХОД”, а U mx – амплитуда гармонического сигнала по напряжению на выводах IN - “ВХОД”. В режиме измерения ФЧХ (Phase) на экран выводится график зависимости от частоты фазового сдвига между гармоническими сигналами по напряжению U my на выводах “ВЫХОД”, и - U mx на выводах “ВХОД”.

Настройка измерителя заключается в выборе масштабов по осям: логарифмический (кнопка LOG) или линейный (кнопка LIN), и в выборе пределов измерения по вертикальной и горизонтальной осям с помощью кнопок в окошках F – максимальное значение и I – минимальное значение.



Измерение конкретных значений АЧХ и ФЧХ можно проводить с помощью вертикальной визирной линии, которая в исходном положении находится в начале координат и перемещается по экрану с помощью мыши или кнопками ←, →.

Значения измеряемой функции и ее аргумента в месте установки визирной линии индицируется в окошках в правом нижнем углу.

Так, к частотным передаточным характеристикам четырехполюсника относят комплексную функцию частотного коэффициента передачи напряжения К(jω)= U 2 m /U 1 m . Она представляет собой зависимость от частоты отношения комплексной амплитуды выходного напряжения к комплексной амплитуде напряжения на входе. Отсюда следует, что АЧХ передаточной функции напряжений есть К(ω)=U 2 m /U 1 m , а ФЧХ передаточной функции напряжений есть φ к (ω)= φ 2 - φ 1 .

Следовательно, для измерения указанных характеристик клеммы ВХОД измерителя диаграмм Боде необходимо подсоединить ко входу исследуемого четырехполюсника, а клеммы ВЫХОД к выходу четырехполюсника.

Схема измерения частотных передаточных по напряжению характеристик цепи приведена на рис.1.2.


К входным частотным характеристикам четырехполюсника относят полное комплексное входное сопротивление Zвх(jω)=U 1 m /I 1 m . Оно представляет собой зависимость от частоты отношения комплексной амплитуды входного напряжения к комплексной амплитуде тока на входе. Отсюда следует, что АЧХ комплексной функции входного сопротивления есть Z(ω) =U 1 m /I 1 m , а ФЧХ передаточной функции напряжений есть φ к (ω) = φ u 1 - φ I 1 .

Схема измерения частотных характеристик входного сопротивления четырехполюсника приведена на рис.1.3.

Для измерения входных характеристик клеммы ВЫХОД измерителя диаграмм Боде необходимо подсоединить ко входу исследуемого четырехполюсника, а клеммы ВХОД к дополнительному резистору R доп, на котором создается напряжение, пропорциональное входному току.

Отсюда следует, что измеряемая характеристика представляет собой комплексную функцию входного сопротивления:

H(jω) = Ym/Xm= U 1m /I 1m =Zвх(jω)


Графики результатов измерения АЧХ и ФЧХ входного сопротивления, полученные в результате копирования в режиме Analysis Graphs, удобно использовать при оформлении отчета по курсовой работе. Чтобы скопировать изображение схемы или любого фрагмента, расположенного на рабочем столе программы EWB в отчет, подготавливаемый в текстовом редакторе Word, необходимо в меню Edit выделить команду Copy as Bitmap. После чего курсор мыши превращается в крестик, которым по правилу прямоугольника можно выделить нужную часть экрана. После отпускания левой кнопки мыши выделенная часть копируется в буфер обмена, содержимое которого может быть импортировано в любое приложение Windows.

Методика измерения импульсной и переходной характеристик следует из их определений. Схема измерения переходной характеристики приведена на рис.1.5.


Генератор необходимо поставить в режим формирования однополярных прямоугольных импульсов положительной полярности с амплитудой 1В (амплитуда –500мВ, смещение – 500мВ). Осциллограф – в режим синхронизации по каналу А. Затем получить на экране осциллографа устойчивое изображение выходного сигнала исследуемой цепи. Сигнал по каналу В и есть переходная характеристика цепи. Частоту генератора необходимо подобрать так, чтобы в пределах импульса выходной сигнал практически достигал своего стационарного значения.

Построение годографа

При графическом представлении комплексных частотных характеристик (КЧХ) Н(jω) цепи обычно отдельно строят графики АЧХ Н(ω) и ФЧХ φ н (ω). Однако комплексную частотную характеристику можно представить на одном графике. Такой график называется годограф КЧХ и строится он в комплексной плоскости. Годограф КЧХ представляет собой геометрическое место точек концов вектора комплексной функции Н(jω) на комплексной плоскости при изменении частоты ω от 0 до ∞ (рис.1.6). Годограф иногда называют амплитудно-фазовой характеристикой цепи. График годографа позволяет одновременно судить как об АЧХ, а также об ФЧХ комплексной частотной характеристики.

Для построения годографа строится декартовая система координат, при этом по оси X откладывают реальную составляющую Re[Н(jω)] КЧХ, а по оси Y откладывают мнимую составляющую Jm[Н(jω)] КЧХ. На годографе указывают точки, соответствующие некоторым значениям частоты ω, и стрелкой показывают направление перемещения конца вектора Н(jω) при увеличении частоты. График годографа можно строить двумя способами.

По первому способу для построения графика можно использовать результаты расчета АЧХ Н(ω) и ФЧХ φ н (ω), а точки графика годографа для заданного значения частоты ω i наносить на комплексную плоскость аналогично тому, как это делается при построении графика в полярной системе координат.

По второму способу необходимо комплексную частотную характеристику Н(jω) записать в алгебраической форме Н(jω) = Re[Н(jω)] + jJm[Н(jω)], затем для определенных частот ω i рассчитать значения Re[Н(jω)] = Н 1 (ω i) и Jm[Н(jω)] = Н 2 (ω i), и затем, как обычно, нанести эти точки на плоскость и соединив их, получить график.

ЗАДАНИЕ. Для предложенного варианта линейной цепи и заданных параметров:

1. Определить вид дифференциального уравнения, описывающего данную цепь, относительно именно тех входных и выходных параметров, которые указаны на схеме.

2. Найти частотный коэффициент передачи, его модуль и аргумент.

3. Построить графики АЧХ и ФЧХ данной системы.

4. Определить частотный коэффициент передачи мощности и передаточную функцию системы.

5. Найти комплексную функцию входного сопротивления Z ВХ (jw), его АЧХ - Z ВХ (w) и ФЧХ - j z (w); построить графики.

6. Найти импульсную и переходную характеристики; построить их графики.

7. Определить характерные (резонансные) частоты.

8. Найти отклик цепи на прямоугольный импульс с амплитудой Е и длительностью t и временным, классическим, спектральным и операторным методами; сравнить полученные разными методами результаты.

9. Составить схемы измерений частотных и переходных характеристик: Z ВХ (w) и j z (w); K U (ω) и φ k (ω); h(t); g(t) с использованием приборов электронной виртуальной лаборатории Electronics Workbench (EWB).

10. Построить графики характеристик, полученные в результате моделирования.

11. Провести анализ соответствия результатов аналитического расчета и эксперимента.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТОВ

Варианты:


Таблица соответствий вариантов и параметров:

Вариант Параметры
R, Ом L, мГн С, мкФ Е, В τ и, с
1. 0,5
2.
3. 0,4

Примечание:

  1. Если в схеме два одинаковых элемента, то считать R 1 = 2R 2 ; L 1 = 2L 2 ;C 1 = 2C 2 .

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. При каких условиях реакцию линейной системы на короткий входной импульс можно считать импульсной характеристикой системы?

2. Как связаны между собой импульсная характеристика системы и ее частотный коэффициент передачи?

3. Какими способами можно определить частотный коэффициент передачи линейной стационарной системы? Выберите из них оптимальный, на Ваш взгляд, способ.

4. В чем состоит отличие динамических систем от стационарных?

5. В каких случаях и почему для анализа системы удобнее использовать частотный коэффициент передачи мощности?

7. Исследуйте аналогичные условия (дифференцирования и интегрирования) для RL-цепи.

9. Как определяется функция комплексного входного сопротивления цепи и в чем ее физический смысл?

10. Как определяются АЧХ и ФЧХ комплексного входного сопротивления?

11. В каких логарифмических единицах выражается усиление сигнала в системе?

12. Поясните принципы построения годографа и его практическую значимость.

ЛИТЕРАТУРА

1. Попов В. П. Основы теории цепей. – М.: Высшая школа, 2000.

2. Бессонов Л.А. Теоретические основы электротехники. – М.: Высшая школа, 1999.

  1. Баскаков С.И. Радиотехнические цепи и сигналы. - М.: Высшая школа, 1988.
  2. Основы теории электрических цепей и электроники: Учебник для ВУЗов/ В.П.Бакалов, А.Н.Игнатов, Б.И.Крук. – М: Радио и связь, 1989.
  3. Каяцкас А. А. Основы радиоэлектроники. - М., Высшая школа, 1988.
  4. Бирюков В. Н. Попов В. П. Семенцова В. И. Сборник задач по теории цепей. – М.: Высшая школа, 1998.
  5. Шебес М. Р. Задачник по теории линейных электрических цепей. - М.: Высшая школа, 1990.
  6. Электротехника и электроника в экспериментах и упражнениях. Практикум на Electronics Workbench. В 2-х томах. Под ред. Д. И. Панфилова. - М.: Додэко, 2000.

Министерство образования Республики Беларусь

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им.Я.КУПАЛЫ»

Физико-технический факультет

Кафедра промышленной электроники

КУРСОВОЙ ПРОЕКТ

по курсу «Теория электрических цепей»

на тему: «АНАЛИЗ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНЫХ СТАЦИОНАРНЫХ СИСТЕМАХ»

Вариант № ___

Выполнил:

студент 2 курса 4 группы _____(подпись)______ __(дата)__ И.О.Фамилия

Проверил:

доцент кафедры промышленной

электроники, к.т.н. ___________________________________ Т.А.Ситкевич

Гродно, 2012


Похожая информация.


Частотными характеристиками называются формулы и графики, характеризующие реакцию звена на гармоническое входное воздействие в установившемся режиме, т.е. вынужденные синусоидальные колебания звена.

Если на вход линейного звена подать гармоническое воздействие

u(t)=U 0 sin(wt),

где U 0 - амплитуда,

w - угловая частота, имеющая размерность [рад/с] или ,

то, как следует из необходимых и достаточных условий линейности, на выходе звена в установившемся режиме будет также гармоническая функция той же частоты, но, в общем случае, другой амплитуды U 0 и сдвинутая по фазе относительно входной величины на угол φ

x(t)=X 0 sin(wt+φ).

Связь между выходной гармоникой и входной устанавливается с помощью частотной передаточной функции звена W(jw).

1. Частотная передаточная функция является важнейшей динамической характеристикой звена и представляет собой отношение изображений по Фурье выходного и входного сигналов при нулевых начальных условиях и равных нулю воздействиях на остальных входах:

Из сравнения преобразований Фурье и Лапласа следует, что частотную передаточную функцию звена легко получить из его передаточной функции путем замены p на jw, т.е.

(3.7)

Частотная передаточная функция W(jw), как видно, представляет собой комплексное число, которое можно записать как в полярной, так и декартовой системах координат:

W(jw) = A(w) = U(w) + jV(w), (3.8)

где А(w) - модуль или амплитуда частотной передаточной функции, представляющий собой отношение амплитуды выходной величины к амплитуде входной, т.е. коэффициент усиления звена k на частоте w

А(w) = | W(jw) | = mod W(jw) = ; (3.9)

φ(w) - аргумент или фаза частотной передаточной функции, показывает фазовый сдвиг выходной гармоники по отношению к входной на частоте w

φ(w) = arg W(jw); (3.10)

U(w) - вещественная составляющая частотной передаточной функции

U(w) = Re W(jw); (3.11)

V(w) - мнимая составляющая частотной передаточной функции

V(w) = Im W(jw). (3.12)

Соотношения

и

связывают между собой составляющие частотной передаточной функции.

Таким образом, частотная передаточная функция, определяющая реакцию звена на гармонические колебания всех возможных частот, позволяет, пользуясь принципом суперпозиции, найти реакцию линейного звена на произвольное воздействие.

Выражение (3.8) представляет амплитудно-фазовую частотную характеристику звена. Выражения (3.9) и (3.10) называются соответственно амплитудной частотной характеристикой звена и фазовой частотной характеристикой звена, а выражения (3.11) и (3.12) - вещественной частотной характеристикой и мнимой частотной характеристикой звена.

Для наглядного представления частотных свойств звена частотные характеристики отображают графически.

2. Амплитудно-фазовая частотная характеристика (АФЧХ). Строится на комплексной плоскости и представляет собой геометрическое место концов векторов (годографов), соответствующих частотной передаточной функции W(jw) при изменении частоты от нуля до бесконечности (рис.3.3). Для каждой частоты w на комплексной плоскости наносится точка, полученные точки соединяются затем плавной кривой. АФЧХ можно строить как в декартовых координатах (U, V), так и в полярных (A, φ).

Рис. 3.3. Амплитудно-фазовая частотная характеристика

АФЧХ строится как для положительных, так и для отрицательных частот. При замене в W(jw) w на -w получается сопряженная комплексная величина. Поэтому АФЧХ для отрицательных частот является зеркальным отображением относительно вещественной оси АФЧХ для положительных частот. На рис.3.3 АФЧХ для отрицательных частот показана пунктирной линией.

Длина вектора, проведенного из начала координат в точку АФЧХ, соответствующую выбранной частоте w, равна А(w), а угол между вектором и положительным направлением вещественной оси равен φ(w).

3. Амплитудная частотная характеристика (АЧХ). Показывает, как пропускает звено сигнал различной частоты, иначе, представляет собой коэффициент изменения амплитуды гармонических колебаний при прохождении через звено (рис. 3.4).

Рис. 3.4. Амплитудная частотная характеристика

где w р - резонансная частота, т.е. частота, на которой амплитудная частотная характеристика достигает максимума, иначе, на этой частоте звено имеет максимальный коэффициент усиления;

w с - частота среза, частота, на которой амплитудная частотная характеристика, уменьшаясь, принимает значение, равное единице, и при дальнейшем повышении частоты остается меньше единицы;

w п - частота пропускания, частота, на которой амплитудная частотная характеристика, уменьшаясь, принимает значение, равное 0,707, и при дальнейшем повышении частоты не увеличивается;

Dw п =2w п - полоса пропускания, диапазон частот гармонических колебаний, пропускаемых звеном без заметного ослабления.

4. Фазовая частотная характеристика (ФЧХ). Показывает фазовые сдвиги, вносимые звеном на различных частотах (рис.3.5).

Рис. 3.5. Фазовая частотная характеристика

5. Вещественная частотная характеристика (ВЧХ). Представляет собой зависимость вещественной составляющей частотной передаточной функции от частоты (рис. 3.6).

Рис. 3.6. Вещественная частотная характеристика

Мнимая частотная характеристика (МЧХ). Представляет собой зависимость мнимой составляющей частотной передаточной функции от частоты (рис.3.7).

Мнимая частотная характеристика

6. Логарифмические частотные характеристики (ЛЧХ). На практике чаще всего амплитудную и фазовую частотные характеристики изображают в логарифмическом масштабе (рис. 3.8).

Рис. 3.8. Логарифмические частотные характеристики

При построении логарифмической амплитудной частотной характеристики (ЛАХ) по оси ординат откладывают величину

L(w) = 20 lg A(w) = 20 lg|W(jw)|. (3.13)

Эта величина выражается в децибелах [дб]. Бел представляет собой логарифмическую единицу, соответствующую десятикратному увеличению мощности. Один бел соответствует увеличению мощности в 10 раз, 2 бела - в 100 раз и т.д. Децибел равен одной десятой части бела. Так как А(w) представляет собой отношение не мощностей, а амплитуд, то увеличение этого отношения в десять раз соответствует двум белам или двадцати децибелам. Поэтому в правой части (3.13) стоит множитель 20. По оси абсцисс откладывается частота w в логарифмическом масштабе lg(w). Равномерной единицей на оси абсцисс является декада [дек] - любой отрезок, на котором значение частоты w увеличивается в десять раз. Точка пересечения ЛАХ с осью абсцисс соответствует частоте среза w с. Верхняя полуплоскость ЛАХ соответствует значениям А>1 (усиление амплитуды), а нижняя полуплоскость - значениям А<1 (ослабление амплитуды).

При построении логарифмической фазовой частотной характеристики (ЛФХ) отсчет углов φ(w) = argW(jw) идет по оси ординат в обычном масштабе в угловых градусах.

Главным достоинством логарифмических частотных характеристик является возможность построения их во многих случаях практически без вычислительной работы.

Все рассмотренные виды динамических характеристик звеньев (передаточная функция, дифференциальное уравнение, весовая функция, переходная функция, амплитудно-фазовая частотная характеристика) связаны между собой. Поэтому все они эквивалентны друг другу в определении динамических свойств звена системы управления.

Фазо-частотная характеристика — это зависимость сдвига фаз между выходным синусоидальным колебанием и входным от частоты. Идеальной фазо-частотной зависимостью является линейная зависимость фазы от частоты, как это показано на рисунке 1.


Рисунок 1. Идеальная фазо-частотная характеристика

Не все сигналы одинаково чувствительны к фазовым искажениям. Фазовые искажения звукового сигнала практически не ощущаются человеческим ухом, в то же самое время фазовые искажения телевизионного сигнала легко обнаруживаются человеческим глазом. Не менее вредны фазовые искажения при передаче импульсного или цифрового сигнала. Связано это с тем, что неискаженный сигнал должен быть просто задержан относительно входного, как это показано на рисунке 2.


Рисунок 2. Неискаженная передача сигнала

Если разложить прямоугольный сигнал на синусоидальные составляющие, то можно отследить как меняется фаза в зависимости от частоты при отсутствии искажений. На рисунке 3 показаны три основных синусоидальных составляющих сигнала последовательности прямоугольных импульсов.



Рисунок 3. Задержка синусоидальных составляющих при отсутствии фазовых искажений

На этом рисунке красным цветом показана первая гармоника, синим цветом третья гармоника, а фиолетовым — пятая гармоника. Суммарный сигнал показан черным цветом. При задержке данного сигнала на 0,2 мС сдвиг фазы первой гармоники должен быть 90°, сдвиг фазы третьей гармоники — 270°, а пятой гармоники уже 450°! Как видно из данного примера, все точки находятся на одной прямой. Иными словами линейная фазо-частотная характеристика соответствует одинаковой временной задержке всех частотных составляющих полезного сигнала.

И действительно, ведь производная фазовой характеристики по частоте соответствует групповой задержке сигнала:

Следовательно линейной фазовой характеристике соответствует постоянное групповое время задержки сигнала. Причем чем больше крутизна фазовой характеристики, тем больше время запаздывания. Предельный случай — нулевая задержка соответствует нулевому сдвигу по фазе на всех частотах.

Литература:

Вместе со статьей "Фазо-частотная характеристика и зависимость задержки сигнала τ от частоты" читают:

Помехи отличаются от шумов тем, что поступают в радиоэлектронное устройство извне. Шумы образуются внутри радиоэлектронного устройства...
http://digteh.ru/Sxemoteh/Shum/

Я купил bluetooth-наушники Motorola Pulse Escape. Звучание в целом понравилось, но остался непонятен один момент. Согласно инструкции, в них имеется переключение эквалайзера. Предположительно, наушники имеют несколько вшитых настроек, которые переключаются по кругу. К сожалению, я не смог определить на слух, какие там настройки и сколько их, и решил выяснить это при помощи измерений.

Итак, мы хотим измерить амплитудно-частотную характеристику (АЧХ) наушников — это график, который показывает, какие частоты воспроизводятся громче, а какие — тише. Оказывается, такие измерения можно произвести «на коленке», без специальной аппаратуры.

Нам понадобится компьютер с Windows (я использовал ноутбук), микрофон, а также источник звука — какой-нибудь плеер с bluetooth (я взял смартфон). Ну и сами наушники, конечно.

(Под катом — много картинок).

Подготовка

Вот такой микрофон у меня нашёлся среди старых гаджетов. Микрофон копеечный, для разговоров, не предназначенный ни для записи музыки, ни тем более не для измерений.

Конечно, такой микрофон имеет свою АЧХ (и, забегая вперёд, диаграмму направленности), поэтому сильно исказит результаты измерений, но для поставленной задачи подойдёт, потому что нас интересуют не столько абсолютные характеристики наушников, сколько то, как они изменяются при переключении эквалайзера.

У ноутбука имелся всего один комбинированный аудиоразъём. Подключаем туда наш микрофон:


Windows спрашивает, что за прибор мы подключили. Отвечаем, что это микрофон:


Windows — немецкий, извините. Я ведь обещал использовать подручные материалы.

Тем самым единственный аудиоразъём оказывается занятым, поэтому и нужен дополнительный источник звука. Скачиваем на смартфон специальный тестовый аудиосигнал — так называемый розовый шум. Розовый шум — это звук, содержащий весь спектр частот, причём равной мощности по всему диапазону. (Не путайте его с белым шумом! У белого шума другое распределение мощности, поэтому его нельзя использовать для измерений, это грозит повреждением динамиков).

Настраиваем уровень чувствительности микрофона. Нажимаем правую кнопку мыши на значке громкоговорителя в Windows и выбираем регулировку устройств записи:


Находим наш микрофон (у меня он получил название Jack Mic):


Выбираем его в качестве устройства записи (птичка в зелёном кружочке). Выставляем ему уровень чувствительности поближе к максимуму:


Microphone Boost (если есть) убираем! Это автоматическая подстройка чувствительности. Для голоса — хорошо, а при измерениях будет только мешать.

Устанавливаем на ноутбук измерительную программу. Я люблю TrueRTA за возможность видеть сразу много графиков на одном экране. (RTA — по-английски АЧХ). В бесплатной демо-версии программа измеряет АЧХ с шагом в октаву (то есть соседние точки измерения отличаются по частоте в 2 раза). Это, конечно, очень грубо, но для наших целей сойдёт.

При помощи скотча закрепляем микрофон около края стола, так чтобы его можно было накрыть наушником:


Важно зафиксировать микрофон, чтобы не сдвинулся в процессе измерений. Подсоединяем наушники проводом к смартфону и кладём одним наушником поверх микрофона, так чтобы плотно закрыть его сверху — примерно так наушник охватывает человеческое ухо:


Второй наушник свободно висит под столом, из него мы будем слышать включённый тестовый сигнал. Убеждаемся, что наушники лежат стабильно, их тоже нельзя сдвигать в процессе измерений. Можно начинать.

Измерения

Запускаем программу TrueRTA и видим:


Основная часть окна — поле для графиков. Слева от него находятся кнопки генератора сигналов, он нам не понадобится, потому что у нас внешний источник сигнала, смартфон. Справа — настройки графиков и измерений. Сверху — ещё кое-какие настройки и управление. Ставим белый цвет поля, чтобы лучше видеть графики (меню View → Background Color → White).

Выставляем границу измерений 20 Hz и количество измерений, скажем, 100. Программа будет автоматически делать указанное количество измерений подряд и усреднять результат, для шумового сигнала это необходимо. Выключаем отображение столбчатых диаграмм, пусть вместо них рисуются графики (кнопка сверху с изображением столбиков, отмечена на следующем скриншоте).

Сделав настройки, производим первое измерение — это будет измерение тишины. Закрываем окна и двери, просим детей помолчать и нажимаем Go:


Если всё сделано правильно, в поле начнёт вырисовываться график. Подождём, пока он стабилизируется (перестанет «плясать» туда-сюда) и нажмём Stop:


Видим, что «громкость тишины» (фоновых шумов) не превышает -40dBu, и выставляем (регулятор dB Bottom в правой части окна) нижнюю границу отображения в -40dBu, чтобы убрать фоновый шум с экрана и покрупнее видеть график интересующего нас сигнала.

Теперь будем измерять настоящий тестовый сигнал. Включаем плеер на смартфоне, начав с малой громкости.

Запускаем измерение в TrueRTA кнопкой Go и постепенно прибавляем громкость на смартфоне. Из свободного наушника начинает доноситься шипящий шум, а на экране возникает график. Добавляем громкость, пока график не достигнет по высоте примерно -10...0dBu:


Дождавшись стабилизации графика, останавливаем измерение кнопкой Stop в программе. Плеер тоже пока останавливаем. Итак, что мы видим на графике? Неплохие басы (кроме самых глубоких), некоторый спад к средним частотам и резкий спад к верхним частотам. Напоминаю, что это не настоящая АЧХ наушников, свой вклад вносит микрофон.

Этот график мы возьмем в качестве эталонного. Наушники получали сигнал по проводу, в этом режиме они работают как пассивные динамики без всяких эквалайзеров, их кнопки не действуют. Занесём график в память номер 1 (через меню View → Save to Memory → Save to Memory 1 или нажав Alt+1). В ячейках памяти можно сохранять графики, а кнопками Mem1..Mem20 в верхней части окна включать или отключать показ этих графиков на экране.

Теперь отсоединяем провод (как от наушников, так и от смартфона) и подключаем наушники к смартфону по bluetooth, стараясь не сдвинуть их на столе.


Снова включаем плеер, запускаем измерение кнопкой Go и, регулируя громкость на смартфоне, приводим новый график по уровню к эталонному. Эталонный график изображён зелёным, а новый — синим:


Останавливаем измерение (плеер можно не выключать, если не раздражает шипение из свободного наушника) и радуемся, что по bluetooth наушники выдают такую же АЧХ, как по проводу. Заносим график в память номер 2 (Alt+2), чтоб не ушёл с экрана.

Теперь переключаем эквалайзер кнопками наушников. Наушники рапортуют бодрым женским голосом «EQ changed». Включаем измерение и, дождавшись стабилизации графика, видим:


Хм. Кое-где есть отличия в 1 децибел, но это как-то несерьёзно. Скорее похоже на погрешности измерений. Заносим и этот график в память, переключаем эквалайзер ещё раз и после измерения видим ещё один график (если очень хорошо присмотреться):


Ну, вы уже поняли. Сколько я ни переключал эквалайзер на наушниках, никаких изменений это не давало!

На этом, в принципе, можно заканчивать работу и делать вывод: у этих наушников работающего эквалайзера нет . (Теперь понятно, почему его не получалось услышать).

Однако тот факт, что мы не увидели никаких изменений в результатах, огорчает и даже вызывает сомнения в правильности методики. Может, мы измеряли что-то не то?

Бонусные измерения

Чтобы убедиться, что мы измеряли АЧХ, а не погоду на Луне, давайте покрутим эквалайзер в другом месте. У нас же есть плеер в смартфоне! Воспользуемся его эквалайзером:

© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows