Структура папок файловой системы является табличной. Файловая система. Что это

Структура папок файловой системы является табличной. Файловая система. Что это

13.07.2019

Файлы на компьютере создаются и размещаются на базе системных принципов. Благодаря их реализации, пользователь получает возможность комфортно обращаться к нужной информации, не задумываясь о сложных алгоритмах доступа к ней. Каким образом организована работа файловых систем? Какие из них самые популярные сегодня? Каковы различия между файловыми системами, адаптированными для ПК? И теми, что используются в мобильных устройствах - смартфонах или планшетах?

Файловые системы: определение

Согласно распространенному определению, файловая система - это совокупность алгоритмов и стандартов, задействуемых с целью организации эффективного доступа пользователя ПК к данным, размещенным на компьютере. Некоторые специалисты считают ее частью Другие IT-эксперты, признавая тот факт, что она непосредственно связана с ОС, полагают, что файловая система - независимый компонент управления компьютерными данными.

Каким образом использовались компьютеры до того, как была изобретена файловая система? Информатика - как научная дисциплина - зафиксировала тот факт, что долгое время управление данными осуществлялось посредством структурирования в рамках алгоритмов, заложенных в конкретных программах. Таким образом, один из критериев файловой системы - это наличие стандартов, одинаковых для большинства программ, использующих доступ к данным.

Принципы работы файловых систем

Файловая система - это, прежде всего, механизм, предполагающий задействование аппаратных ресурсов компьютера. Как правило, речь здесь идет о магнитных или лазерных носителях - жестких дисках, CD, DVD, флешках, еще не успевших устареть дискетах. Для того чтобы понять, как соответствующая система работает, определимся с тем, что же такое собственно сам файл.

Согласно общепринятому в среде IT-экспертов определению, это область данных фиксированной величины, выражаемая в базовых единицах измерения информации - байтах. Располагается файл на дисковом носителе, как правило, в виде нескольких связанных между собой блоков, имеющих конкретный "адрес" доступа. Файловая система определяет эти самые координаты и "сообщает" их, в свою очередь, ОС. Которая понятным образом транслирует соответствующие данные пользователю. Происходит обращение к данным с целью считывания их, модифицирования, создания новых. Конкретный алгоритм работы с "координатами" файлов может быть разным. Он зависит от типа компьютера, ОС, специфики хранящихся данных и прочих условий. Потому, есть различные виды файловых систем. Каждая из них оптимизирована для использования в конкретной ОС или для работы с определенными типами данных.

Адаптирование дискового носителя к использованию посредством алгоритмов конкретной файловой системы называется форматированием. Соответствующие аппаратные элементы диска - кластеры - подготавливаются к последующей записи на них файлов, а также чтения их в соответствии со стандартами, заложенными в той или иной системе управления данными. Как поменять файловую систему? В большинстве случаев это можно сделать, только переформатировав носитель данных. Как правило, файлы при этом стираются. Однако есть вариант, при котором, задействуя специальные программы, все же можно, хотя это, как правило, требует большого количества времени, поменять систему управления данными, оставив последние нетронутыми.

Файловые системы работают не без ошибок. Возможны некоторые сбои в организации работы с блоками данных. Но они в большинстве случаев не критичны. Как правило, нет проблем с тем, как исправить файловую систему, устранить ошибки. В ОС Windows для этого, в частности, предусмотрены встроенные программные решения, доступные для любого пользователя. Такие как, например, программа "Проверка диска".

Разновидности

Какие виды файловых систем можно назвать самыми распространенными? Вероятно, в первую очередь те, что используются самой популярной ОС для ПК в мире - Windows. Основные файловые системы Windows - это FAT, FAT32, NTFS и их различные модификации. Наряду с компьютерами популярность обрели смартфоны и планшеты. Большинство из них, если говорить о глобальном рынке и не рассматривать различия в технологических платформах, управляется ОС Android и iOS. Эти ОС задействуют свои алгоритмы работы с данными, отличные от тех, которыми характеризуются файловые системы Windows.

Стандарты, открытые для всех

Отметим, что в последнее время на мировом рынке электроники наблюдается некоторая унификация стандартов в аспекте работы ОС с различными типами данных. Это прослеживается в двух аспектах. Во-первых, на разных устройствах под управлением двух несхожих типов ОС часто используется одна и та же файловая система, в одинаковой степени совместимая с каждой ОС. Во-вторых, современные версии ОС, как правило, способны распознавать не только типичные для себя файловые системы, но и те, что традиционно используются в других ОС - как посредством встроенных алгоритмов, так и с помощью стороннего программного обеспечения. Например, современные версии Linux, как правило, без проблем распознают отмеченные файловые системы для Windows.

Структура файловой системы

Несмотря на то что виды файловых систем представлены в достаточно большом количестве, работают они в целом по очень схожим принципам (общую схему мы изложили выше) и в рамках сходных структурных элементов или объектов. Рассмотрим их. Каковы основные объекты файловой системы?

Один из ключевых - Он являет собой изолированную область данных, в которой могут размещаться файлы. Структура каталогов - иерархическая. Что это значит? Один или несколько каталогов могут размещаться в другом. Который, в свою очередь, входит в состав "вышестоящего". Самым "главным" считается корневой каталог. Если говорить о принципах, на базе которых работает файловая система Windows - 7, 8, XP или же другой версии, - корневым каталогом считается логический диск, обозначаемый буквой - как правило, C, D, E (но можно настроить любую, что есть в английском алфавите). Что касается, к примеру, ОС Linux, то там корневым каталогом выступает магнитный носитель в целом. В этой операционной системе и других ОС, основанных на ее принципах - к таковым относится Android - логические диски не используются. Можно ли хранить файлы без каталогов? Да. Но это не очень удобно. Собственно, комфорт в пользовании ПК - одна из причин внедрения в файловых системах принципа распределения данных по каталогам. Называться, кстати, они могут по-разному. В Windows каталоги именуются папками, в Linux - в основном так же. Но традиционное, используемое в течение многих лет название каталогов в этой ОС - "директории". Как и в предшествующих Windows и Linux ОС - DOS, Unix.

В среде IT-специалистов нет однозначного мнения касательно того, считать ли файл структурным элементом соответствующей системы. Те, кто полагает, что это не совсем корректно, аргументируют свою точку зрения тем, что система вполне может существовать и без файлов. Пусть это с практической точки зрения и бесполезное явление. Даже если на диске никаких файлов не записано, соответствующая система все равно может присутствовать. Как правило, магнитные носители, продаваемые в магазинах, не содержат каких-либо файлов. Но на них уже присутствует соответствующая система. Согласно другой точке зрения, файлы нужно считать неотъемлемой составляющей систем, которыми они управляются. Почему? А потому, что, как считают эксперты, алгоритмы их задействования адаптированы прежде всего под работу именно с файлами в рамках тех или иных стандартов. Ни для чего другого рассматриваемые системы не предназначены.

Еще один элемент, присутствующий в большинстве файловых систем - Он представляет собой область данных, содержащих сведения о размещении конкретного файла в определенном месте. То есть разместить ярлык можно в одном месте диска, однако при этом возможно обеспечение доступа к нужной области данных, которая располагается в другой части носителя. Считать, что ярлыки - это полноценные объекты файловой системы, можно, если условиться, что таковыми являются также и файлы.

Так или иначе не будет ошибкой сказать, что все три типа данных - файлы, ярлыки и каталоги - являются элементами соответствующих систем. По крайней мере, этот тезис будет соответствовать одной из распространенных точек зрения. Важнейший аспект, характеризующий то, как работает файловая система - это принципы именования файлов и каталогов.

Имена файлов и каталогов в разных системах

Если условиться, что файлы - это все же составные элементы соответствующих им систем, то стоит рассмотреть их базовую структуру. Что можно отметить в первую очередь? Для удобства организации доступа к ним в большинстве современных систем управления данными предусмотрена двухуровневая структура именования файлов. Первый уровень - это название. Второй - расширение. Возьмем для примера музыкальный файл Dance.mp3. Dance - это название. Mp3 - расширение. Первое призвано раскрывать для пользователя суть содержания файла (а для программы быть ориентиром для быстрого доступа). Второе обозначает тип файла. Если он Mp3, то нетрудно догадаться, что речь идет о музыке. Файлы с расширением Doc - это, как правило, документы, Jpg - картинки, Html - веб-страницы.

Каталоги, в свою очередь, имеют одноуровневую структуру. У них есть только название, расширения нет. Если говорить о различиях между разными видами систем управления данными, то первое, на что следует обратить внимание - это как раз-таки реализуемые в них принципы именования файлов и каталогов. Касательно ОС Windows специфика следующая. В самой популярной в мире операционной системе файлы могут иметь название на любом языке. Максимальная длина, правда, при этом ограничена. Конкретный ее интервал зависит от используемой системы управления данными. Обычно это значения в пределах 200-260 символов.

Общее правило для всех ОС и соответствующих им систем управления данными - в одном каталоге не могут находиться файлы с одинаковыми наименованиями. В Linux при этом присутствует некая "либерализация" этого правила. В одном каталоге могут быть файлы с одинаковыми буквами, но в разном регистре. Например, Dance.mp3 и DANCE.mp3. В ОС Windows это невозможно. Эти же правила установлены также и в аспекте размещения каталогов внутри других.

Адресация файлов и каталогов

Адресация файлов и каталогов - важнейший элемент соответствующей системы. В ОС Windows ее пользовательский формат может выглядеть так: C:/Documents/Music/ - это доступ к каталогу Music. Если нас интересует какой-то конкретный файл, то адрес может выглядеть так: C:/Documents/Music/Dance.mp3. Почему "пользовательский"? Дело в том, что на уровне программно-аппаратного взаимодействия компонентов компьютера структура доступа к файлам гораздо более сложная. Файловая система определяет местоположение файловых блоков и взаимодействует с ОС по большей части в рамках скрытых от пользователя операций. Однако у пользователя ПК крайне редко возникает необходимость пользоваться иными форматами "адресов". Практически всегда доступ к файлам осуществляется в указанном стандарте.

Сравнение файловых систем для Windows

Мы изучили общие принципы функционирования файловых систем. Рассмотрим теперь особенности самых распространенных их видов. В Windows чаще всего используются такие файловые системы, как FAT, FAT32, NTFS, а также exFAT. Первая в этом ряду считается устаревшей. Она, вместе с тем, долгое время была неким флагманом индустрии, но по мере роста технологичности ПК ее возможности перестали удовлетворять запросам пользователей и потребностям в ресурсах со стороны программного обеспечения.

Призванная заменить FAT файловая система - это FAT32. Как считают многие IT-эксперты, сейчас она самая популярная, если говорить о рынке ПК под управлением Windows. Она чаще всего используется при хранении файлов на жестких дисках и флешках. Также можно отметить, что эта система управления данными достаточно регулярно используется в модулях памяти различных цифровых устройств - телефонах, фотоаппаратах. Основное преимущество FAT32, которое выделяют IT-эксперты, таким образом, это универсальность. Несмотря на то что создана была данная файловая система компанией Microsoft, работать с данными в рамках заложенных в ней алгоритмов могут большинство современных ОС, включая те, что инсталлированы на указанные типы цифровой техники.

Есть у системы FAT32 и ряд недостатков. Прежде всего можно отметить ограничение на размер одного взятого файла - он не может быть больше 4 Гб. Также в системе FAT32 нельзя встроенными средствами Windows задать логический диск, размер которого был бы больше 32 Гб. Но это можно сделать, установив дополнительное специализированное ПО.

Другая популярная система управления файлами, что разработана Microsoft - это NTFS. Как считают некоторые IT-эксперты, по большинству параметров она превосходит FAT32. Но этот тезис справедлив, если речь идет о работе компьютера под управлением Windows. Система NTFS не настолько универсальна, как FAT32. Особенности ее функционирования делают использование данной файловой системы не всегда комфортным, в частности, в мобильных устройствах. Одно из ключевых преимуществ NFTS - надежность. Например, в тех случаях, когда у жесткого диска внезапно отключается питание, вероятность того, что файлы повредятся, сводится к минимуму, благодаря предусмотренным в NTFS алгоритмам дублирования доступа к данным.

Одна из новейших файловых систем от Microsoft - exFAT. Наилучшим образом она адаптирована для флешек. Базовые принципы работы в ней те же, что и в FAT32, но присутствует также и значимая модернизация в некоторых аспектах: например, нет никаких ограничений по размеру единичного файла. Вместе с тем система exFAT, как отмечают многие IT-эксперты, в числе тех, что обладают низкой универсальностью. На компьютерах под управлением ОС, отличных от Windows, работа с файлами при использовании exFAT может быть затруднена. Более того, даже в некоторых версиях самой Windows, таких как XP, данные на дисках, отформатированных по алгоритмам exFAT, могут не читаться. Потребуется установка дополнительного драйвера.

Отметим, что по причине задействования достаточно широкого спектра файловых систем в ОС Windows у пользователя могут возникать периодические сложности в аспекте совместимости различных устройств с компьютером. В ряде случаев, например, требуется установить драйвер файловой системы WPD (Windows Portable Devices - технологии, используемой при работе с переносными устройствами). Иногда его может не оказаться под рукой у пользователя, вследствие чего внешний носитель ОС может не распознать. Файловая система WPD может потребовать дополнительных программных средств адаптации к операционной среде на конкретном компьютере. В ряде случаев пользователь будет вынужден обращаться к IT-специалистам для решения проблемы.

Как определить, какая именно файловая система - exFAT или NTFS, а может быть, FAT32 - оптимальна для использования в конкретных случаях? Рекомендации IT-специалистов в целом следующие. Можно задействовать два основных подхода. Согласно первому следует разграничивать типичные файловые системы жестких дисков, а также те, что лучше адаптированы к флеш-накопителям. FAT и FAT32, как считают многие специалисты, лучше подходят для "флешек", NTFS - для винчестеров (в силу технологических особенностей работы с данными).

В рамках второго подхода значение имеет величина носителя. Если речь идет об использовании сравнительно небольшого объема диска или флешки, отформатировать их можно в системе FAT32. Если диск большего размера, то можно попробовать exFAT. Но только в том случае, если не предполагается использование носителей на других компьютерах, особенно тех, где стоят не самые свежие версии Windows. Если речь идет о больших жестких дисках, в том числе и внешних, то их целесообразно форматировать в NTFS. Примерно таковы критерии, по которым может быть выбрана оптимальная файловая система - exFAT или NTFS, FAT32. То есть использовать какую-либо из них следует, учитывая размер носителя, его тип, а также версию ОС, на котором накопитель преимущественно используется.

Файловые системы для Mac

Другая популярная программно-аппаратная платформа на мировом рынке компьютерной техники - Macintosh от Apple. ПК данной линейки работают под управлением операционной системы Mac OS. Каковы особенности организации работы с файлами в компьютерах Mac? В самых современных ПК от Apple используется файловая система Mac OS Extended. Ранее в компьютерах Mac работа с данными управлялась в соответствии со стандартами HFS.

Главное, что можно отметить в аспекте ее характеристик: на диске, которым управляет файловая система Mac OS Extended, могут размещаться файлы очень большого объема - речь может идти о нескольких миллионах терабайт.

Файловая система в Android-устройствах

Самая популярная ОС для мобильных устройств - виде электронной техники, не уступающей по популярности ПК, - это Android. Каким образом осуществляется управление файлами на девайсах соответствующего типа? Отметим прежде всего, что данная операционная система - фактически "мобильная" адаптация ОС Linux, которая, благодаря открытому программному коду, может быть модифицирована с перспективой использования на самом широком спектре устройств. Поэтому управление файлами в мобильных девайсах под управлением Android осуществляется в целом по тем же принципам, что и в Linux. Некоторые из них мы отметили выше. В частности, управление файлами в Linux осуществляется без деления носителя на логические диски, как это происходит в Windows. Что еще интересного заключает в себе файловая система Android?

Корневым каталогом в Android, как правило, выступает область данных, именуемая /mnt. Соответственно, адрес нужного файла может выглядеть примерно так: /mnt/sd/photo.jpg. Кроме того, есть еще одна особенность системы управления данными, что реализована в данной мобильной ОС. Дело в том, что флеш-память девайса, как правило, классифицирована на несколько разделов, таких как, например, System или Data. При этом, изначально заданный размер каждого из них изменить нельзя. Приблизительную аналогию касательно данного технологического аспекта можно обнаружить, вспомнив, что нельзя (если не использовать специального ПО) менять размер логических дисков в Windows. Он должен быть фиксированным.

Еще одна интересная особенность организации работы с файлами в Android - соответствующая операционная система, как правило, записывает новые данные в конкретную область диска - Data. Работа, к примеру, с разделом System при этом не осуществляется. Поэтому, когда пользователь задействует функцию сброса программных настроек смартфона или планшета до уровня "заводских", то на практике это означает, что те файлы, что записаны в область Data, попросту стираются. Раздел System же, как правило, остается неизменным. Более того, какие-либо корректировки содержимого в System пользователь, не обладая специализированным ПО, осуществлять не может. Процедура, связанная с обновлением системной области носителя в Android-устройстве, называется перепрошивкой. Это не форматирование, хотя обе операции часто осуществляются одновременно. Как правило, перепрошивка применяется с целью установки на мобильное устройство более новой версии ОС Android.

Таким образом, ключевые принципы, на базе которых работает файловая система Android - отсутствие логических дисков, а также жесткое разграничение доступа к системным и пользовательским данным. Нельзя сказать, что данный подход принципиально отличается от того, что реализован в Windows, однако, как считают многие IT-эксперты, в ОС от Microsoft для пользователей присутствует несколько большая свобода в работе с файлами. Впрочем, как полагают некоторые специалисты, это нельзя считать однозначным преимуществом Windows. "Либеральный" режим в аспекте управления файлами задействуют, конечно же, не только пользователи, но и компьютерные вирусы, к которым Windows очень восприимчива (в отличие от Linux и ее "мобильной" реализации в виде Android). В этом, как считают эксперты, заключается одна из причин того, что вирусов для Android-устройств столь немного - чисто с технологической точки зрения они не могут в полной мере функционировать в операционной среде, работающей по принципам строгого контроля доступа к файлам.

Структура компьютера (ФС)? Такие машины есть практически в каждой крупной компании, не говоря уже о рядовых потребителях. Сегодня у каждой третьей или даже второй семьи точно есть такая техника, причем даже не в одном экземпляре.

Пожалуй, молодое поколение может догадываться, о чем собственно идет речь. Но люди постарше, молодость которых проходила в окружении другой техники, могут не знать. А между тем интерес к компьютерам стали проявлять и они.

Определение файла

Работой любого компьютера руководит операционная система, без которой невозможно его использовать по прямому предназначению. Для понимания того, что представляет собой ФС, необходимо вникнуть в суть другого термина - файла. С английского слово file переводится как "папка" и означает именованную область данных диска либо любого другого носителя информации. Также можно дать и такое определение файла: это - последовательность определенного количества байтов, причем его длина произвольная.

Как понять файловую структуру персонального компьютера наиболее адекватно, и о каких данных идет речь? Обычно любая хранимая или обрабатываемая информация - это:

  • электронные документы;
  • изображения;
  • программное обеспечение;
  • музыкальные композиции;
  • видеоконтент и прочее.

Однако всю эту информацию необходимо как-то упорядочить, что делается для удобства в отношении пользователя. Но это относится не только к файлам. К примеру, все мы храним обувь в отдельности от одежды. То же самое применимо и к продуктам, ведь никто не хранит обувь рядом с ними?! Поэтому мы прибегаем к двум проверенным способам:

  • сортировка;
  • группировка.

Что касается файлов, то здесь используется 2 способ. За что и отвечает операционная система. Но действует она посредством файловой системы или структуры.

Что понимать под файловой системой?

По сути, файловая система является частью операционной системы. Именно благодаря ей есть возможность проводить различные операции с цифровой информацией: давать имена файлам или менять их название, а также удалять их, перемещать и совершать прочие действия. В этом как раз и заключается суть того, что такое файловая структура компьютера. Ответ на этот вопрос вы найдете далее.

Иногда из-за какого-то программного сбоя информация может быть утеряна, и тогда данный ресурс позволяет восстановить ее. Проще говоря, файловая структура или скорее система выступает в качестве основного инструмента для работы с цифровыми данными.

Для группировки файлов создаются так называемые каталоги, которые по-простому именуются как папки. Это своего рода контейнеры, внутри которых размещена вся хранимая информация и другие каталоги. Они создаются посредством самой файловой системы.

Если необходимо проделать какое-либо действие над файлом (открыть, переместить и так далее), то операционная система обращается как раз к файловой системе. Именно последняя и производит необходимые манипуляции. Теперь можно сформировать более понятное определение файловой системы. Это - организационный процесс хранения данных на каком-нибудь носителе.

Однако при покупке нового жесткого диска на него нельзя сразу же записать какую-нибудь информацию. Дело в том, что там отсутствует сама структура файловой системы компьютера, она создается только после процесса форматирования. К слову сказать, если на носителе уже присутствуют файлы, то данная процедура удаляет все полностью, поэтому нужно быть внимательным.

Функциональность ФС

Файловая система выполняет несколько полезных функций:

  • Может определить месторасположение файла, а также его имя, формат, размер и параметры.
  • Определение порядка хранения информации на носителе.
  • Хранение служебной информации (дефектные области диска).
  • Определение количества файлов в каталоге.
  • Определяет максимальную длину для имен файлов и каталогов.
  • Организация устойчивости системы к вероятным сбоям в питании, а также аппаратным и программным ошибкам.
  • Определение безопасности хранения данных и осуществление быстрого доступа к ним.

А так как для хранения информации используются преимущественно жесткие диски, то организационный порядок определяется как раз в отношении их разделов (томов).

Иерархия

Файловая структура компьютера имеет вид дерева. Внимательный пользователь может заметить, что вся хранимая информация на компьютере, а именно на жестком диске, напоминает иерархическую структуру.

То есть внутри одного каталога может быть другой, внутри которого, в свою очередь, еще один и так далее. Все это позволяет организовать рабочий порядок, и пользователи знают, что и где находится.

Те каталоги, которые размещены внутри других - это, по сути, те же самые папки, которым можно также назначить имена. Только у них не записываются последние три (или более) буквы. Обычно это характерно для файлов, и такое расширение имени определяет их тип. Папка же вмещает в себя данные самого разного типа, а поэтому нет необходимости в ее расширении имени.

Конечно, это сделать никто не запретит, но здесь не будет никакого смысла. Кроме того, папка со значением exe, к примеру, "Фильмы.exe" в большинстве случаев указывает на присутствие вируса - в этом случае не рекомендуется открывать ее.

Атрибуты файлов

Для облегчения работы с файловой структурой персонального компьютера предусмотрены специальные параметры, называемые атрибутами. То есть это - положжения, которые определяют правила просмотра или редактирования данных. В зависимости от этого существует 4 типа основных атрибутов:

  • Read only - только для чтения (R).
  • System - системный (S).
  • Hidden - скрытый (H).
  • Archive - архивный (A).

Параметр R - его смысл можно понять из его русского названия. То есть это относится к режиму редактирования: если у файла активирован такой атрибут, то попытки изменить его не увенчаются успехом. Также его невозможно уничтожить. Поэтому данный параметр актуален для локальных сетей, где доступ к данным есть у большинства пользователей в пределах этой сети.

Атрибут S указывает на принадлежность файлов к операционной системе, и их наличие необходимо для стабильной работы. В связи с этим, при попытке удалить или переместить такие данные (что нежелательно), система задаст вопрос, действительно ли пользователь желает выполнить операцию. Тем не менее, некоторые вирусы способны маскироваться таким образом, что плохо сказывается на файловой структуре для хранения информации в компьютере.

Параметр H при активации скрывает файлы с виду. Это актуально для наиболее важных системных данных, которые можно удалить случайно.

Атрибут A указывает, что файл сжат.

Разновидности файловой системы

Существует несколько типов файловых систем, между которыми рядовой пользователь не найдет видимых различий. А между тем каждой разновидности присущи свои характеристики. Файловые системы подразделяются в зависимости от предназначения:

  • для жестких дисков;
  • для магнитных носителей;
  • для оптических носителей;
  • для виртуальной среды;
  • сетевые.

Наибольшее распространение получили следующие файловые системы:

  • EXFAT.
  • NTFS.

Среди них есть те, что уже устарели, а другие еще используются. При этом у каждого типа есть свои преимущества и недостатки. Стоит рассмотреть их чуть более подробно.

EFS

Полностью звучит так: Encrypting File System. Данная файловая структура операционной системы персонального компьютера наиболее предпочтительна в силу того, что все данные располагаются в зашифрованном виде. Благодаря этому этот тип широко распространен и работает с операционными системами всего семейства Windows.

Шифрование задается просто. Для этого нужно зайти в свойства файла, нажать на кнопку «Другие», найти пункт «Шифровать содержимое для защиты данных» и поставить рядом галочку. После этого нажать «Приметить» и «ОК». Помимо этого, можно указать кому разрешен доступ к зашифрованному файлу.

Universal Disk Format или UDF

Данная файловая система предназначена для носителей информации, в частности оптических дисков. Поддерживается операционной системой Windows XP и старше. Имеет свои особенности: длина имени файлов не превышает 255 символов (ASCII-кодировка) или 127 (Unicode-кодировка).

Что касается регистра, то он может быть как нижним, так и верхним. При этом максимальная длина пути составляет 1023 символа.

EXFAT

Что такое файловая структура компьютера EXFAT? Преимущественно она используется для переносных накопителей информации (флешки). Это своего рода посредник между Windows и Linux, который ответственен за преобразование файлов из одной системы в другую. В Windows Vista и Windows 7 можно отформатировать накопители посредством стандартного инструмента.

EXT

Данная файловая система разрабатывалась специально для тех операционных систем, которые основаны на ядре Linux. Первые разработки были представлены на суд пользователей в 1992 году. На сегодняшний день уже имеется несколько версий:

  • ext2;
  • ext3;
  • ext3cow;
  • ext4.

Последняя система является самой усовершенствованной и новой, а потому и актуальной. Современные дистрибутивы Linux как раз используют ext4. Понять, что такое файловая структура компьютера, можно и на примере прочих, более известных систем, о которых речь пойдет ниже.

FAT

Теперь подошла очередь для узнаваемых систем, среди которых FAT. Система была создана в конце прошлого столетия, а за ее разработку ответственны Билл Гейтс и Марк МакДональд. В силу своей простоты она используется во многих флеш-накопителях и в настоящее время.

Существуют несколько ее разновидностей:

  • FAT12.
  • FAT16.
  • FAT32.

Между собой они отличаются разрядностью, то есть количеством бит, которое отводится для хранения одного кластера. Соответственно чем выше разрядность, тем больший объем может поддерживать система FAT. Самая первая ее версия поддерживала небольшой объем данных по современным меркам - всего лишь 2 Гб. Соответственно, для разделов или дисков с большим объемом она не подходит, а потому быстро устарела.

В отношении же FAT32 речь идет уже о 127 гигабайтах, в чем ее максимальный размер для диска. И в настоящее время в большинстве случаев как раз она и используется.

NTFS

Что такое файловая структура компьютера NTFS? Эта самая популярная на сегодня система, которую начала разрабатывать компания Microsoft, известная нам по серии операционных систем Windows. Главное ее качество заключается в том, что в случае произошедшего сбоя операционной системы, все данные будут сохранены, поскольку подобная разновидность способна самовосстанавливаться.

Также есть и другая особенность - ее структура представлена в виде определенной таблицы. Первые 16 данных в реестре - это сама файловая система. Каждый байт - это тоже своего рода таблица, где содержится зеркальный файл с расширением MFT, а также данные регистрации, которые понадобятся в случае восстановлении информации. Помимо них, здесь есть и сведения касательно самого файла с его данными, который был сохранен на жестком диске.

Впервые система NTFS была представлена в 1993 году одновременно с выходом Windows NT 3.1. Если сравнивать с другой разновидностью - FAT, то здесь можно найти немалое количество улучшений. К примеру, теперь практически нет ограничений в отношении размеров жесткого диска или его разделов. Также стали поддерживаться некоторые полезные функции: жесткие ссылки, шифрование, сжатие.

В заключение

Теперь, зная определение, что такое файловая структура компьютера, любой пользователь сможет выбрать для себя подходящий вариант, который его больше устроит. Каждая из описанных систем обладает своими особенностями, что и определило для некоторых из них дальнейшую судьбу.

Какие-то уже больше не используются. Связано это главным образом, с тем, что объем данных постоянно увеличивается. И если ранее вполне хватало 80-100 Гб, то теперь это мизерное количество. Сейчас счет ведется уже на терабайты.

Общее. В теории информатики определены следующие три основных типа структур данных – линейная, табличная, иерархическая. Пример книга: последовательность листов – линейная структура. Части, разделы, главы, параграфы – иерархия. Оглавление – таблица – связывает – иерархическую с линейной. У структурированных данных появляется новый атрибут - Адрес. И так:

      Линейные структуры (списки, вектора). Обычные списки. Адрес каждого элемента однозначно определяется его номером. Если все элементы списка имеют равную длину – вектора данных.

      Табличные структуры (таблицы, матрицы). Отличие таблицы от списка – каждый элемент – определяется адресом, состоящим не из одного, а нескольких параметров. Самый распространенный пример – матрица - адрес – два параметра – номер строки и номер столбца. Многомерные таблицы.

      Иерархические структуры. Используются для представления нерегулярных данных. Адрес – определяется маршрутом – от вершины дерева. Файловая система – компьютера. (Маршрут может превысить – величину данных, дихотомия – всегда два разветвления – влево и вправо).

Упорядочение структур данных. Основной способ – сортировка. ! При добавлении нового элемента в упорядоченную структуру – возможно изменения адреса у существующих. Для иерархических структур – индексация – каждому элементу уникальный номер – который далее используется в сортировке и поиске.

    Основные элементы файловой системы

Историческим первым шагом в области хранения и управления данными стало использование систем управления файлами.

Файл - это именованная область внешней памяти, в которую можно записывать и из которой можно считывать данные. Три параметра:

    последовательность произвольного числа байтов,

    уникальное собственное имя (фактически – адрес).

    данные одного типа – тип файла.

Правила именования файлов, способ доступа к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла.

Первая, в современном понимании, развитая файловая система была разработана фирмой IBM для ее серии 360 (1965-1966 годы). Но в нынешних системах она практически не применяется. Использовала списочные структуры данных (ЕС- том, раздел, файл).

Большинство из Вас знакомо с файловыми системами современных ОС. Это прежде всего MS DOS, Windows, а некоторые с построением файловой системы для различных вариантов UNIX.

Структура файлов. Файл представляет совокупность блоков данных, размещенных на внешнем носителе. Для произведения обмена с магнитным диском на уровне аппаратуры нужно указать номер цилиндра, номер поверхности, номер блока на соответствующей дорожке и число байтов, которое нужно записать или прочитать от начала этого блока. Поэтому во всех файловых системах явно или неявно выделяется некоторый базовый уровень, обеспечивающий работу с файлами, представляющими набор прямо адресуемых в адресном пространстве блоков.

Именование файлов. Все современные файловые системы поддерживают многоуровневое именование файлов за счет поддержания во внешней памяти дополнительных файлов со специальной структурой - каталогов. Каждый каталог содержит имена каталогов и/или файлов, содержащихся в данном каталоге. Таким образом, полное имя файла состоит из списка имен каталогов плюс имя файла в каталоге, непосредственно содержащем данный файл. Разница между способами именования файлов в разных файловых системах состоит в том, с чего начинается эта цепочка имен. (Unix, DOS-Windows)

Защита файлов. Системы управления файлами должны обеспечивать авторизацию доступа к файлам. В общем виде подход состоит в том, что по отношению к каждому зарегистрированному пользователю данной вычислительной системы для каждого существующего файла указываются действия, которые разрешены или запрещены данному пользователю. Существовали попытки реализовать этот подход в полном объеме. Но это вызывало слишком большие накладные расходы как по хранению избыточной информации, так и по использованию этой информации для контроля правомочности доступа. Поэтому в большинстве современных систем управления файлами применяется подход к защите файлов, впервые реализованный в ОС UNIX (1974). В этой системе каждому зарегистрированному пользователю соответствует пара целочисленных идентификаторов: идентификатор группы, к которой относится этот пользователь, и его собственный идентификатор в группе. Соответственно, при каждом файле хранится полный идентификатор пользователя, который создал этот файл, и отмечается, какие действия с файлом может производить он сам, какие действия с файлом доступны для других пользователей той же группы, и что могут делать с файлом пользователи других групп. Эта информация очень компактна, при проверке требуется небольшое количество действий, и этот способ контроля доступа удовлетворителен в большинстве случаев.

Режим многопользовательского доступа. Если операционная система поддерживает многопользовательский режим вполне реальна ситуация, когда два или более пользователей одновременно пытаются работать с одним и тем же файлом. Если все эти пользователи собираются только читать файл, ничего страшного не произойдет. Но если хотя бы один из них будет изменять файл, для корректной работы этой группы требуется взаимная синхронизация. Исторически в файловых системах применялся следующий подход. В операции открытия файла (первой и обязательной операции, с которой должен начинаться сеанс работы с файлом) помимо прочих параметров указывался режим работы (чтение или изменение). + имеется специальные процедуры синхронизации действий пользователей. Нельзя по записям!

    Журналирование в файловых системах. Общие принципы.

Запуск проверки системы (fsck) на больших файловых системах может занять много времени, что очень плохо, учитывая сегодняшние высоко скоростные системы. Причиной, по которой целостность отсутствует в файловой системе, может являться не корректное размонтирование, например в момент прекращения работы на диск велась запись. Приложения могли обновлять данные, содержащиеся в файлах и система могла обновлять мета-данные файловой системы, которые являются «данными о данных файловой системы», иными словами, информация о том какие блоки связаны с какими файлами, какие файлы размещены в каких директориях и тому подобное. Ошибки (отсутствие целостности) в файлах данных – это плохо, но куда хуже ошибки в мета-данных файловой системы, что может привести к потерям файлов и другим серьезным проблемам.

Для минимизации проблем связанных с целостностью и минимизации времени перезапуска системы, журналируемая файловая система хранит список изменений, которые она будут проводить с файловой системой перед фактической записью изменений. Эти записи хранятся в отдельной части файловой системы, называемой «журналом» или «логом». Как только эти записи журнала (лога) безопасно записаны, журналируемая файловая система вносит эти изменения в файловую систему и затем удаляет эти записи из «лога» (журнала регистраций). Записи журнала организованы в наборы связанных изменений файловой системы, что очень похоже на то, как изменения добавляемые в базу данных организованны в транзакции.

Журналируемая файловая система увеличивает вероятность целостности, потому что записи в лог-файл ведутся до проведения изменений файловой системы, и потому что файловая система хранит эти записи до тех пор, пока они не будут целиком и безопасно применены к файловой системе. При перезагрузке компьютера, который использует журналируемую файловую систему, программа монтирования может гарантировать целостность файловой системы простой проверкой лог-файла на наличие ожидаемых, но не произведенных изменений и записью их в файловую систему. В большинстве случаев, системе не нужно проводить проверку целостности файловой системы, а это означает, что компьютер использующий журналируемую файловую систему будет доступен для работы практически сразу после перезагрузки. Соответственно шансы потери данных в связи с проблемами в файловой системе значительно снижаются.

Классический вид журналируемой файловой системы это хранение в журнале (логе) изменений метаданных файловой системы и хранение изменений всех данных файловой системы, включая изменения самих файлов.

    Файловая система MS-DOS (FAT)

Файловая система MS-DOS представляет собой древовидную файловую систему для небольших дисков и простых структур каталогов, в корне которой находится корневой каталог, а листьями являются файлы и другие каталоги, возможно пустые. Размещение файлов под управлением этой файловой системы происходит по кластерам, размер которых может колебаться от 4 КБ до 64 КБ кратно 4, без использования свойства смежности смешанным способом выделения дисковой памяти. Например, на рисунке показано три файла. Файл File1.txt является достаточно большим: он задействует три следующих друг за другом блока. Небольшой файл File3.txt использует пространство только одного размещаемого блока. Третий файл File2.txt. является большим фрагментированным файлом. В каждом случае точка входа указывает на первый распределяемый блок, принадлежащий файлу. Если файл использует несколько распределяемых блоков, то предшествующий блок указывает на следующий в цепочке. Значение FFF отождествляется с концом последовательности.

Дисковый раздел FAT

Для эффективного доступа к файлам используется таблица размещения файлов – File Allocation Table, которая размещается в начале раздела (или логического диска). Именно от названия таблицы размещения и происходит название этой файловой системы – FAT. В целях защиты раздела на нем хранятся две копии FAT, на тот случай, если одна из них окажется поврежденной. Кроме того, таблицы размещения файлов должны размещаться по строго фиксированным адресам, чтобы файлы, необходимые для запуска системы, были размещены корректно.

Таблица размещения файлов состоит из 16-разрядных элементов и содержит следующую информацию о каждом кластере логического диска:

    кластер не используется;

    кластер используется файлом;

    плохой кластер;

    последний кластер файла;.

Так как каждому кластеру должен быть присвоен уникальный 16-разрядный номер, то следовательно, FAT поддерживает максимально 216, или 65 536 кластеров на одном логическом диске (да еще некоторую часть кластеров резервирует для своих нужд). Таким образом получаем предельный размер диска, обслуживаемого MS-DOS, в 4 ГБ. Размер кластера можно увеличить или уменьшить в зависимости от размера диска. Однако, когда размер диска превышает некоторую величину, кластеры становятся слишком большого размера что ведет к внутренней дефрагментации диска. Кроме информации о файлах, в таблице размещения файлов может быть помещена информация и о каталогах. При этом каталоги рассматриваются как специальные файлы с 32-байтовыми элементами для каждого файла, содержащегося в этом каталоге. Корневой каталог имеет фиксированный размер – 512 записей для жесткого диска, а для дискет этот размер определяется объемом дискеты. Кроме того, корневой каталог расположен сразу же после второй копии FAT, поскольку в нем находятся файлы, необходимые загрузчику MS-DOS.

При поиске файла на диске MS-DOS вынуждена просматривать структуру каталога, чтобы найти его. Например, чтобы запустить исполняемый файл С:\Program\NC4\nc.exe находит исполнимый файл, выполнив следующие действия:

    читает корневой каталог диска C: и ищет в нем каталог Program;

    читает начальный кластер Program и ищет в этом каталоге запись о вложенном каталоге NC4;

    читает начальный кластер вложенного каталога NC4 и ищет в нем запись о файле nc.exe;

    читает все кластеры файла nc.exe.

Такой способ поиска не является самым быстрым среди действующих файловых систем. Причем, чем больше глубина каталогов, тем медленнее будет происходить поиск. Для ускорения операции поиска следует придерживаться сбалансированной файловой структуры.

Достоинства FAT

    Является лучшим выбором для логических дисков небольшого размера, т.к. стартует с минимальными накладными расходами. На дисках, размер которых не превышает 500 МБ, она работает с приемлемыми характеристиками.

Недостатки FAT

    Поскольку размер записи о файле ограничен 32 байтами, а информация должна включать в себя и размер файла и дату, и атрибуты и т.д., то размер под название файла также ограничен и не может превышать 8+3 символа на каждый файл. Использование так называемых коротких имен файлов делает FAT менее привлекательной для использования по сравнению с другими файловыми системами.

    Использование FAT на дисках, объем которых превышает 500 МБ нерационально по причине дефрагментации диска.

    Файловая система FAT не обладает никакими средствами защиты и поддерживает минимальные возможности по обеспечению безопасности информации.

    Скорость выполнения операций в FAT происходит обратно пропорционально глубине вложенности каталогов и объему диска.

    Файловая система UNIX – систем (ext3)

Современная, мощная и бесплатная операционная система Linux предоставляет широкую территорию для разработки современных систем и пользовательского программного обеспечения. Некоторые из наиболее интересных разработок в недавних ядрах Linux это новые, высоко производительные технологии для управления хранением, размещением и обновлением данных на диске. Один из наиболее интересных механизмов – это файловая система ext3, которая интегрируется в ядро Linux начиная с версии 2.4.16, и уже доступна по умолчанию в Linux дистрибутивах от компаний Red Hat и SuSE.

Файловая система ext3 является журналируемой файловой системой, 100% совместимой со всеми утилитами созданными для создания, управления и тонкой настройки файловой системы ext2, которая используется в Linux системах несколько последних лет. Перед детальным описанием различий между файловыми системами ext2 и ext3, уточним терминологию файловых систем и хранения файлов.

На системном уровне, все данные на компьютере существуют как блоки данных на неком устройстве хранения, организованных с помощью специальных структур данных в разделы (логические наборы на устройстве хранения), которые в свою очередь организованы в файлы, директории и неиспользуемое (свободное) пространство.

Файловые системы созданы на разделах диска для упрощения хранения и организации данных в форме файлов и директорий. Linux, как Unix система, использует иерархическую файловую систему составленную из файлов и директорий, которые соответственно содержат либо файлы либо каталоги. Файлы и директории в файловой системе Linux становятся доступным пользователю путем их монтирования (команда «mount»), которая обычно является частью процесса загрузки системы. Список файловых систем доступных для использования хранится в файле /etc/fstab (FileSystem TABle). Список файловых систем не смонтированных в данные момент системой хранится в файле /etc/mtab (Mount TABle).

В момент монтирования файловой системы в процессе загрузки, бит в заголовке («чистый бит» / «clean bit») стирается, это означает что файловая система используется, и что структуры данных используемые для управления размещением и организации файлов и директорий, в данной файловой системы могут быть изменены.

Файловая система расценивается как целостная если все блоки данных в ней либо используются, либо свободны; каждый размещенный блок данных занят одним и только одним файлом или директорией; все файлы и директории могут быть доступны после обработки серии других директорий в файловой системе. Когда система Linux намеренно прекращает работу используя команды оператора, все файловые системы размонтируются. Размонтирование файловой системы в процессе завершения работы устанавливает «чистый бит» в заголовок файловой системы, указывая на то, что файловая система была размонтирована должным образом и, тем самым, может рассматриваться как целостная.

Года отладки и переработки файловой системы и использование улучшенных алгоритмов для записи данных на диск в большой степени уменьшили повреждение данных вызываемых приложениями или самим ядром Linux, но устранение повреждения и потери данных в связи с отключением питания и другими системными проблемами до сих пор является сложной задачей. В случае аварийной остановки или простого отключения Linux системы без использования стандартных процедур остановки работы «чистый бит» в заголовке файловой системы не устанавливается. При следующей загрузке системы, процесс монтировки обнаруживает, что система не маркирована как «чистая», и физически проверяет ее целостность использую Linux/Unix утилиту проверки файловой системы "fsck" (File System ChecK).

Существует несколько журналируемых файловых систем доступных для Linux. Наиболее известные из них: XFS, журналируемая файловая система разработанная Silicon Graphics, но сейчас выпущенная открытым кодом (open source); RaiserFS, журналируемая файловая система разработанная специально для Linux; JFS, журналируемая файловая система первоначально разработанная IBM, но сейчас выпущенная как открытый код; ext3 – файловая система разработанная доктором Стефаном Твиди (Stephan Tweedie) в Red Hat, и несколько других систем.

Файловая система ext3 – это журналируемая версия Linux файловой системы ext2. Файловая система ext3 имеет одно значительно преимущество перед другими журналируемыми файловыми системами – она полностью совместима с файловой системой ext2. Это делает возможным использование всех существующих приложений разработанных для манипуляции и настройки файловой системы ext2.

Файловая система ext3 поддерживается ядрами Linux версии 2.4.16 и более поздними, и должна быть активизирована использованием диалога конфигурации файловых систем (Filesystems Configuration) при сборке ядра. В Linux дистрибутивы, такие как Red Hat 7.2 и SuSE 7.3 уже включена встроенная поддержка файловой системы ext3. Вы можете использовать файловую систему ext3 только в том случае, когда поддержка ext3 встроена в ваше ядро и у вас есть последние версии утилит «mount» и «e2fsprogs».

В большинстве случаев перевод файловых систем из одного формата в другой влечет за собой резервное копирование всех содержащихся данных, переформатирование разделов или логических томов, содержащих файловую систему, и затем восстановление всех данных на эту файловую систему. В связи с совместимостью файловых систем ext2 и ext3, все эти действия можно не проводить, и перевод может быть сделать с помощью одной команды (запущенной с полномочиями root):

# /sbin/tune2fs -j <имя-раздела >

Например, перевод файловой системы ext2 расположенной на разделе /dev/hda5 в файловую систему ext3 может быть осуществлен с помощью следующей комманды:

# /sbin/tune2fs -j /dev/hda5

Опция "-j" команды "tune2fs" создает журнал ext3 на существующей ext2 файловой системе. После перевода файловой системы ext2 в ext3, вы так же должны внести изменения в записи файла /etc/fstab, для указания что теперь раздел является файловой системой "ext3". Так же вы можете использовать авто определение типа раздела (опция «auto»), но все же рекомендуется явно указывать тип файловой системы. Следующий пример файл /etc/fstab показывает изменения до и после перевода файловой системы для раздела /dev/hda5:

/dev/ hda5 /opt ext2 defaults 1 2

/dev/ hda5 /opt ext3 defaults 1 0

Последнее поле в /etc/fstab указывает этап в загрузке, во время которого целостность файловой системы должна быть проверена с помощью утилиты «fsck». При использовании файловой системы ext3, вы можете установить это значение в «0», как показано на предыдущем примере. Это означает что программа "fsck" никогда не будет проверять целостность файловой системе, в связи с тем что целостность файловой системы гарантируется путем отката в журнале.

Перевод корневой файловой системы в ext3 требует особого подхода, и лучше всего его проводить в режиме одного пользователя (single user mode) после создания RAM диска поддерживающего файловую систему ext3.

Кроме совместимости с утилитами файловой системы ext2 и простым переводом файловой системы из ext2 в ext3, файловая система ext3 так же предлагает несколько различных типов журнилирования.

Файловая система ext3 поддерживает три различных режима журналирования, которые могут быть активированы из файла /etc/fstab. Эти режимы журналирования следующие:

    Журнал / journal – запись всех изменений данных файловой системы и мета-данных. Наиболее медленный из всех трех режимов журналирования. Этот режим минимизирует шанс потери изменений файлов которые вы проводите в файловой системе.

    Последовательный / ordered – записываются изменения только мета-данных файловой системы, но записывает обновления данных файла на диск перед изменениями ассоциируемых мета-данных файловой системы. Этот режим журналирования ext3 установлен по умолчанию.

    Обратная запись / writeback – записываются только изменения мета-данных файловой системы, основан на стандартном процессе записи изменений данных файлов. Это наиболее быстрый метод журналирования.

Различия между этими режимами журналирования одновременно и едва заметны, и основательны. Использование режима «журнал» требует, что бы файловая система ext3 записывала каждое изменение файловой системы дважды – первый раз в журнал, а затем в саму файловую систему. Это может снизить общую производительность вашей файловой системы, но этот режим наиболее любим пользователями, потому что он минимизирует шанс потери изменения данных ваших файлов, так как и изменения мета - данных и изменения данный файлов записывается в журнал ext3 и может быть повторено при перезагрузке системы.

Используя «последовательный» режим, записываются только изменения мета - данных файловой системы, что понижает избыточность между записью в файловую систему и в журнал, именно в связи с эти метод более быстрый. Не смотря на то, что изменения данных файла не записываются в журнал, они должны быть сделаны до изменений ассоциируемых мета - данных файловой системы, которые проводит журналирующий ext3 демон, что может немного снизить производительность вашей системы. Использование этого метода журналирования гарантирует что файлы в файловой системе никогда не будет рассинхронизированы со связанными мета-данными файловой системы.

Метод «обратная запись» наиболее быстрый, чем остальные два журналируемых метода, так как хранятся данные только о изменениях мета-данных файловой системы, и нет ожидания изменения ассоциируемых данных файла при записи (перед обновлением таких вещей как размер файла и информация о директории). Так как обновление данных файла производиться асинхронно по отношению к журналируемым изменениям мета-данных файловой системы, файлы в файловой системе могут показывать ошибки в мета-данных, например ошибка в указании владельца блоков данных (обновление которых к моменту перезагрузки системы было не закончено). Это не фатально, но может помешать пользователю.

Указание журналируемого режима, используемого в ext3 файловой системе производиться в файле /etc/fstab для этой файловой системы. «Последовательный» режим используется по умолчанию, но вы можете указать различные режимы журналирования, путем изменения опций для требуемого раздела в файле /etc/fstab. Например, запись в /etc/fstab указывающая на использование режима журналирования «обратная запись» будет выглядеть следующим образом:

/dev/hda5 /opt ext3 data=writeback 1 0

    Файловая система семейства Windows NT (NTFS)

      Физическая структура NTFS

Начнем с общих фактов. Раздел NTFS, теоретически, может быть почти какого угодно размера. Предел, конечно, есть, но я даже не буду указывать его, так как его с запасом хватит на последующие сто лет развития вычислительной техники - при любых темпах роста. Как обстоит с этим дело на практике? Почти так же. Максимальный размер раздела NTFS в данный момент ограничен лишь размерами жестких дисков. NT4, правда, будет испытывать проблемы при попытке установки на раздел, если хоть какая-нибудь его часть отступает более чем на 8 Гб от физического начала диска, но эта проблема касается лишь загрузочного раздела.

Лирическое отступление. Метод инсталляции NT4.0 на пустой диск довольно оригинален и может навести на неправильные мысли о возможностях NTFS. Если вы укажете программе установки, что желаете отформатировать диск в NTFS, максимальный размер, который она вам предложит, будет всего 4 Гб. Почему так мало, если размер раздела NTFS на самом деле практически неограничен? Дело в том, что установочная секция просто не знает этой файловой системы:) Программа установки форматирует этот диск в обычный FAT, максимальный размер которого в NT составляет 4 Гбайт (с использованием не совсем стандартного огромного кластера 64 Кбайта), и на этот FAT устанавливает NT. А вот уже в процессе первой загрузки самой операционной системы (еще в установочной фазе) производится быстрое преобразование раздела в NTFS; так что пользователь ничего и не замечает, кроме странного "ограничения" на размер NTFS при установке. :)

      Структура раздела - общий взгляд

Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт. Никаких аномалий кластерной структуры NTFS не имеет, поэтому на эту, в общем-то, довольно банальную тему, сказать особо нечего.

Диск NTFS условно делится на две части. Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл MFT (об этом ниже). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.

Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая таким образом место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится. При этом не исключена ситуация, когда в этой зоне остались и обычные файлы: никакой аномалии тут нет. Что ж, система старалась оставить её свободной, но ничего не получилось. Жизнь продолжается... Метафайл MFT все-таки может фрагментироваться, хоть это и было бы нежелательно.

      MFT и его структура

Файловая система NTFS представляет собой выдающееся достижение структуризации: каждый элемент системы представляет собой файл - даже служебная информация. Самый главный файл на NTFS называется MFT, или Master File Table - общая таблица файлов. Именно он размещается в MFT зоне и представляет собой централизованный каталог всех остальных файлов диска, и, как не парадоксально, себя самого. MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT. Эти первые 16 элементов MFT - единственная часть диска, имеющая фиксированное положение. Интересно, что вторая копия первых трех записей, для надежности (они очень важны) хранится ровно посередине диска. Остальной MFT-файл может располагаться, как и любой другой файл, в произвольных местах диска - восстановить его положение можно с помощью его самого, "зацепившись" за самую основу - за первый элемент MFT.

        Метафайлы

Первые 16 файлов NTFS (метафайлы) носят служебный характер. Каждый из них отвечает за какой-либо аспект работы системы. Преимущество настолько модульного подхода заключается в поразительной гибкости - например, на FAT-е физическое повреждение в самой области FAT фатально для функционирования всего диска, а NTFS может сместить, даже фрагментировать по диску, все свои служебные области, обойдя любые неисправности поверхности - кроме первых 16 элементов MFT.

Метафайлы находятся корневом каталоге NTFS диска - они начинаются с символа имени "$", хотя получить какую-либо информацию о них стандартными средствами сложно. Любопытно, что и для этих файлов указан вполне реальный размер - можно узнать, например, сколько операционная система тратит на каталогизацию всего вашего диска, посмотрев размер файла $MFT. В следующей таблице приведены используемые в данный момент метафайлы и их назначение.

копия первых 16 записей MFT, размещенная посередине диска

файл поддержки журналирования (см. ниже)

служебная информация - метка тома, версия файловой системы, т.д.

список стандартных атрибутов файлов на томе

корневой каталог

карта свободного места тома

загрузочный сектор (если раздел загрузочный)

файл, в котором записаны права пользователей на использование дискового пространства (начал работать лишь в NT5)

файл - таблица соответствия заглавных и прописных букв в имен файлов на текущем томе. Нужен в основном потому, что в NTFS имена файлов записываются в Unicode, что составляет 65 тысяч различных символов, искать большие и малые эквиваленты которых очень нетривиально.

        Файлы и потоки

Итак, у системы есть файлы - и ничего кроме файлов. Что включает в себя это понятие на NTFS?

    Прежде всего, обязательный элемент - запись в MFT, ведь, как было сказано ранее, все файлы диска упоминаются в MFT. В этом месте хранится вся информация о файле, за исключением собственно данных. Имя файла, размер, положение на диске отдельных фрагментов, и т.д. Если для информации не хватает одной записи MFT, то используются несколько, причем не обязательно подряд.

    Опциональный элемент - потоки данных файла. Может показаться странным определение "опциональный", но, тем не менее, ничего странного тут нет. Во-первых, файл может не иметь данных - в таком случае на него не расходуется свободное место самого диска. Во-вторых, файл может иметь не очень большой размер. Тогда идет в ход довольно удачное решение: данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT. Файлы, занимающие сотни байт, обычно не имеют своего "физического" воплощения в основной файловой области - все данные такого файла хранятся в одном месте - в MFT.

Довольно интересно обстоит дело и с данными файла. Каждый файл на NTFS, в общем-то, имеет несколько абстрактное строение - у него нет как таковых данных, а есть потоки (streams). Один из потоков и носит привычный нам смысл - данные файла. Но большинство атрибутов файла - тоже потоки! Таким образом, получается, что базовая сущность у файла только одна - номер в MFT, а всё остальное опционально. Данная абстракция может использоваться для создания довольно удобных вещей - например, файлу можно "прилепить" еще один поток, записав в него любые данные - например, информацию об авторе и содержании файла, как это сделано в Windows 2000 (самая правая закладка в свойствах файла, просматриваемых из проводника). Интересно, что эти дополнительные потоки не видны стандартными средствами: наблюдаемый размер файла - это лишь размер основного потока, который содержит традиционные данные. Можно, к примеру, иметь файл нулевой длинны, при стирании которого освободится 1 Гбайт свободного места - просто потому, что какая-нибудь хитрая программа или технология прилепила в нему дополнительный поток (альтернативные данные) гигабайтового размера. Но на самом деле в текущий момент потоки практически не используются, так что опасаться подобных ситуаций не следует, хотя гипотетически они возможны. Просто имейте в виду, что файл на NTFS - это более глубокое и глобальное понятие, чем можно себе вообразить просто просматривая каталоги диска. Ну и напоследок: имя файла может содержать любые символы, включая полый набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла - 255 символов.

      Каталоги

Каталог на NTFS представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Внутренняя структура каталога представляет собой бинарное дерево. Вот что это означает: для поиска файла с данным именем в линейном каталоге, таком, например, как у FAT-а, операционной системе приходится просматривать все элементы каталога, пока она не найдет нужный. Бинарное же дерево располагает имена файлов таким образом, чтобы поиск файла осуществлялся более быстрым способом - с помощью получения двухзначных ответов на вопросы о положении файла. Вопрос, на который бинарное дерево способно дать ответ, таков: в какой группе, относительно данного элемента, находится искомое имя - выше или ниже? Мы начинаем с такого вопроса к среднему элементу, и каждый ответ сужает зону поиска в среднем в два раза. Файлы, скажем, просто отсортированы по алфавиту, и ответ на вопрос осуществляется очевидным способом - сравнением начальных букв. Область поиска, суженная в два раза, начинает исследоваться аналогичным образом, начиная опять же со среднего элемента.

Вывод - для поиска одного файла среди 1000, например, FAT придется осуществить в среднем 500 сравнений (наиболее вероятно, что файл будет найден на середине поиска), а системе на основе дерева - всего около 10-ти (2^10 = 1024). Экономия времени поиска налицо. Не стоит, однако думать, что в традиционных системах (FAT) всё так запущено: во-первых, поддержание списка файлов в виде бинарного дерева довольно трудоемко, а во-вторых - даже FAT в исполнении современной системы (Windows2000 или Windows98) использует сходную оптимизацию поиска. Это просто еще один факт в вашу копилку знаний. Хочется также развеять распространенное заблуждение (которое я сам разделял совсем еще недавно) о том, что добавлять файл в каталог в виде дерева труднее, чем в линейный каталог: это достаточно сравнимые по времени операции - дело в том, что для того, чтобы добавить файл в каталог, нужно сначала убедится, что файла с таким именем там еще нет:) - и вот тут-то в линейной системе у нас будут трудности с поиском файла, описанные выше, которые с лихвой компенсируют саму простоту добавления файла в каталог.

Какую информацию можно получить, просто прочитав файл каталога? Ровно то, что выдает команда dir. Для выполнения простейшей навигации по диску не нужно лазить в MFT за каждым файлом, надо лишь читать самую общую информацию о файлах из файлов каталогов. Главный каталог диска - корневой - ничем не отличается об обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT.

      Журналирование

NTFS - отказоустойчивая система, которая вполне может привести себя в корректное состояние при практически любых реальных сбоях. Любая современная файловая система основана на таком понятии, как транзакция - действие, совершаемое целиком и корректно или не совершаемое вообще. У NTFS просто не бывает промежуточных (ошибочных или некорректных) состояний - квант изменения данных не может быть поделен на до и после сбоя, принося разрушения и путаницу - он либо совершен, либо отменен.

Пример 1: осуществляется запись данных на диск. Вдруг выясняется, что в то место, куда мы только что решили записать очередную порцию данных, писать не удалось - физическое повреждение поверхности. Поведение NTFS в этом случае довольно логично: транзакция записи откатывается целиком - система осознает, что запись не произведена. Место помечается как сбойное, а данные записываются в другое место - начинается новая транзакция.

Пример 2: более сложный случай - идет запись данных на диск. Вдруг, бах - отключается питание и система перезагружается. На какой фазе остановилась запись, где есть данные, а где чушь? На помощь приходит другой механизм системы - журнал транзакций. Дело в том, что система, осознав свое желание писать на диск, пометила в метафайле $LogFile это свое состояние. При перезагрузке это файл изучается на предмет наличия незавершенных транзакций, которые были прерваны аварией и результат которых непредсказуем - все эти транзакции отменяются: место, в которое осуществлялась запись, помечается снова как свободное, индексы и элементы MFT приводятся в с состояние, в котором они были до сбоя, и система в целом остается стабильна. Ну а если ошибка произошла при записи в журнал? Тоже ничего страшного: транзакция либо еще и не начиналась (идет только попытка записать намерения её произвести), либо уже закончилась - то есть идет попытка записать, что транзакция на самом деле уже выполнена. В последнем случае при следующей загрузке система сама вполне разберется, что на самом деле всё и так записано корректно, и не обратит внимания на "незаконченную" транзакцию.

И все-таки помните, что журналирование - не абсолютная панацея, а лишь средство существенно сократить число ошибок и сбоев системы. Вряд ли рядовой пользователь NTFS хоть когда-нибудь заметит ошибку системы или вынужден будет запускать chkdsk - опыт показывает, что NTFS восстанавливается в полностью корректное состояние даже при сбоях в очень загруженные дисковой активностью моменты. Вы можете даже оптимизировать диск и в самый разгар этого процесса нажать reset - вероятность потерь данных даже в этом случае будет очень низка. Важно понимать, однако, что система восстановления NTFS гарантирует корректность файловой системы, а не ваших данных. Если вы производили запись на диск и получили аварию - ваши данные могут и не записаться. Чудес не бывает.

Файлы NTFS имеют один довольно полезный атрибут - "сжатый". Дело в том, что NTFS имеет встроенную поддержку сжатия дисков - то, для чего раньше приходилось использовать Stacker или DoubleSpace. Любой файл или каталог в индивидуальном порядке может хранится на диске в сжатом виде - этот процесс совершенно прозрачен для приложений. Сжатие файлов имеет очень высокую скорость и только одно большое отрицательное свойство - огромная виртуальная фрагментация сжатых файлов, которая, правда, никому особо не мешает. Сжатие осуществляется блоками по 16 кластеров и использует так называемые "виртуальные кластеры" - опять же предельно гибкое решение, позволяющее добиться интересных эффектов - например, половина файла может быть сжата, а половина - нет. Это достигается благодаря тому, что хранение информации о компрессированности определенных фрагментов очень похоже на обычную фрагментацию файлов: например, типичная запись физической раскладки для реального, несжатого, файла:

кластеры файла с 1 по 43-й хранятся в кластерах диска начиная с 400-го кластеры файла с 44 по 52-й хранятся в кластерах диска начиная с 8530-го...

Физическая раскладка типичного сжатого файла:

кластеры файла с 1 по 9-й хранятся в кластерах диска начиная с 400-го кластеры файла с 10 по 16-й нигде не хранятся кластеры файла с 17 по 18-й хранятся в кластерах диска начиная с 409-го кластеры файла с 19 по 36-й нигде не хранятся....

Видно, что сжатый файл имеет "виртуальные" кластеры, реальной информации в которых нет. Как только система видит такие виртуальные кластеры, она тут же понимает, что данные предыдущего блока, кратного 16-ти, должны быть разжаты, а получившиеся данные как раз заполнят виртуальные кластеры - вот, по сути, и весь алгоритм.

      Безопасность

NTFS содержит множество средств разграничения прав объектов - есть мнение, что это самая совершенная файловая система из всех ныне существующих. В теории это, без сомнения, так, но в текущих реализациях, к сожалению, система прав достаточно далека от идеала и представляет собой хоть и жесткий, но не всегда логичный набор характеристик. Права, назначаемые любому объекту и однозначно соблюдаемые системой, эволюционируют - крупные изменения и дополнения прав осуществлялись уже несколько раз и к Windows 2000 все-таки они пришли к достаточно разумному набору.

Права файловой системы NTFS неразрывно связаны с самой системой - то есть они, вообще говоря, необязательны к соблюдению другой системой, если ей дать физический доступ к диску. Для предотвращения физического доступа в Windows2000 (NT5) всё же ввели стандартную возможность - об этом см. ниже. Система прав в своем текущем состоянии достаточно сложна, и я сомневаюсь, что смогу сказать широкому читателю что-нибудь интересное и полезное ему в обычной жизни. Если вас интересует эта тема - вы найдете множество книг по сетевой архитектуре NT, в которых это описано более чем подробно.

На этом описание строение файловой системы можно закончить, осталось описать лишь некоторое количество просто практичных или оригинальных вещей.

Эта штука была в NTFS с незапамятных времен, но использовалась очень редко - и тем не менее: Hard Link - это когда один и тот же файл имеет два имени (несколько указателей файла-каталога или разных каталогов указывают на одну и ту же MFT запись). Допустим, один и тот же файл имеет имена 1.txt и 2.txt: если пользователь сотрет файл 1, останется файл 2. Если сотрет 2 - останется файл 1, то есть оба имени, с момента создания, совершенно равноправны. Файл физически стирается лишь тогда, когда будет удалено его последнее имя.

      Symbolic Links (NT5)

Гораздо более практичная возможность, позволяющая делать виртуальные каталоги - ровно так же, как и виртуальные диски командой subst в DOSе. Применения достаточно разнообразны: во-первых, упрощение системы каталогов. Если вам не нравится каталог Documents and settings\Administrator\Documents, вы можете прилинковать его в корневой каталог - система будет по прежнему общаться с каталогом с дремучим путем, а вы - с гораздо более коротким именем, полностью ему эквивалентным. Для создания таких связей можно воспользоваться программой junction (junction.zip(15 Kb), 36 кб), которую написал известный специалист Mark Russinovich (http://www.sysinternals.com). Программа работает только в NT5 (Windows 2000), как и сама возможность. Для удаления связи можно воспользоваться стандартной командой rd. ВНИМАНИЕ: Попытка удаления связи с помощью проводника или других файловых менеджеров, не понимающих виртуальную природу каталога (например, FAR), приведет к удалению данных, на которые ссылается ссылка! Будьте осторожны.

      Шифрование (NT5)

Полезная возможность для людей, которые беспокоятся за свои секреты - каждый файл или каталог может также быть зашифрован, что не даст возможность прочесть его другой инсталляцией NT. В сочетании со стандартным и практически непрошибаемым паролем на загрузку самой системы, эта возможность обеспечивает достаточную для большинства применений безопасность избранных вами важных данных.

Файлы и файловые структуры

Логические времена устройств внешней памяти
К каждому компьютеру может быть подключено несколько устройств внешней памяти. Основным устройством внешней памяти ПК является жесткий диск. Обычно его делят на несколько логических разделов .

Наличие нескольких логических разделов на одном жестком диске обеспечивает пользователю следующие преимущества:


  • Можно хранить операционную систему в одном логическом разделе, а данные - в другом, что позволит переустанавливать операционную систему, не затрагивая данные;

  • На одном жестком диске в различные логические разделы можно установить разные операционные системы;

  • Обслуживание одного логического раздела не затрагивает другие разделы.

Устройства внешней памяти и логические разделы диска имеют логическое имя .

В ОС Windows приняты логические имена, состоящие из латинской буквы и двоеточия:


  • для дисководов гибких дисков (дискет) – A: и B:

  • для жестких дисков и логических разделов –C:, D:, E: и т.д.

  • для оптических дисководов – имена, следующие после жестких дисков (например, F:)

  • Для подключаемой к компьютеру флеш-памяти – следующее имя (например, G:)
В ОС Linux приняты другие правила именования дисков:

  • Логические разделы, принадлежащие первому жесткому диску – имена hda1, hda2 и т.д.;

  • Логические разделы, принадлежащие второму жесткому диску получают имена hdb1, hdb2 и т.д.
Все программы и данные хранятся во внешней памяти компьютера в виде файлов.
^ Файл – это поименованная область внешней памяти.
Файловая система – это часть ОС, определяющая способ организации, хранения и именования файлов на носителях информации.
Файл характеризуется набором параметров (имя, размер, дата создания, дата последнего изменения) и атрибутами, используемыми операционной системой для его обработки (архивный, системный, скрытый, только для чтения). Размер файла выражается в байтах.

Имя файла , как правило, состоит из двух частей, разделенных точкой: собственно имени файла и расширения .

Имя файлу дает пользователь. Расширение имени обычно задается программой автоматически при сохранении файла. Расширение позволяет пользователю его тип, а операционной системе открыть файл с помощью нужного приложения.
В ОС Windows в имени файла зап0рещено использование следующих символов: \, /, :, *, ?, ”, |. В Linux эти символы, кроме /, допустимы.

Операционная система Linux, в отличие от Windows, различают строчные и прописные буквы в имени файла: например FILE.txt, file.txt и FiLe.txt – это в Linux три разных файла.

Наиболее распространенные типы файлов и расширений:


Тип файла

Примеры расширений

Системный файл

drv, sys

Текстовый файл

txt, rtf, doc, docx, odt

Графический файл

bmp, gif, jpg, tif, png, psd

Web-страница

htm, html

Звуковой файл

wav, mp3, midi, kar, ogg

Видеофайл

avi, mpeg

Архив

zip, rar

Электронная таблица

xls, ods

Код (текст) программы на языках программирования

bas, pas

В ОС Linux выделяют следующие типы файлов:


  • обычные файлы – файлы с программами и данными

  • каталоги – файлы, содержащие информацию о каталогах

  • ссылки – файлы, содержащие ссылки на другие файлы

  • специальные файлы устройств – файлы, используемые для представления физических устройств компьютера (жестких и оптических дисководов, принтера, звуковых колонок и т.д.)

Каталоги
На каждом компьютере или носителе информации может находиться большое количество файлов. Для удобства поиска информации файлы по определенным признакам объединяются в группы, называемые каталогами или папками .
Каталоги также получают собственное имя. Каталог сам может входить в состав другого, внешнего по отношению к нему каталога. Каждый каталог может содержать множество файлов и вложенных каталогов.

Каталог – это поименованная совокупность файлов и подкаталогов (вложенных каталогов).
Каталог самого верхнего уровня называется корневым каталогом .

В ОС Windows любой информационный носитель имеет корневой каталог, который создается операционной системой без участия пользователя. Обозначаются корневые каталоги добавлением к логическому имени соответствующего устройства внешней памяти знака «\» (обратный слеш): А:\, С:\, В:\ и т.д.

В Linux каталоги жестких дисков или их логических разделов не принадлежат верхнему уровню файловой системы (не являются корневыми каталогами). Они «монтируются» в каталог mnl. Другие устройства внешней памяти (гибкие, оптические и флеш-диски) «монтируются» в каталог media. Каталоги mnt и media в свою очередь, «монтируются» в единый корневой каталог, который обозначается знаком «/» (прямой слеш).

Файловая структура диска – это совокупность файлов на диске и взаимосвязей между ними.

Файловые структуры бывают простыми и многоуровневыми (иерархическими).

Простые файловые структуры могут использоваться для дисков с небольшим (до нескольких десятков) количеством файлов. В этом случае оглавление диска представляет собой линейную последовательность имен файлов.
Иерархические файловые структуры используются для хранения большого (сотни и тысячи) количества файлов. Иерархия – это расположение частей (элементов) целого в порядке от высшего к низшим.

Графическое изображение иерархической файловой структуры называется деревом .

Чтобы обратиться к нужному файлу, хранящемуся на некотором диске, можно указать путь к файлу – имена всех каталогов от корневого до того, в котором непосредственно находится файл.

Последовательно записанные путь к файлу и имя файла составляют полное имя файла .
Пример полного имени файла в ОС Windows:

E:\изображения\фото\Поездка.jpeg

Классификация, структура, характеристики файловых систем!!!

1.Понятие, структура и работа файловой системы.

Файловая система - совокупность (порядок, структура и содержание) организации хранения данных на носителях информации, которая непосредственно представляет доступ к хранимым данным, на бытовом уровне это совокупность всех файлов и папок на диске. Основными "единицами" файловой системы принято считать кластер, файл, каталог, раздел, том, диск.
Совокупность нулей и единиц на носителе информации составляют кластера (минимальный размер места для хранения информации, также их принято называть понятием сектор, размер их кратен 512 байтам).
Файлы - поименованная совокупность байтов, разделенная на сектора. В зависимости от файловой системы, файл может обладать различным набором свойств. Для удобства в работе с файлами используются их (символьные идентификаторы) имена.
Для организации строения файловой системы файлы группируются в каталоги .
Раздел - область диска созданная при его разметке и содержащая один или несколько отформатированных томов.
Том - область раздела с файловой системой, таблицей файлов и областью данных. Один или несколько разделов составляют диск .
Вся информация о файлах хранится в особой области раздела - таблице файлов. Таблица файлов позволяет ассоциировать числовые идентификаторы файлов и дополнительную информацию о них (дата изменения, права доступа, имя и т. д.) с непосредственным содержимым файла, хранящимся в другой области раздела.

MBR (Master Boot Record) специальная область расположенная в начале диска - содержащая необходимую для BIOS информацию для загрузки операционной системы с жесткого диска.
Таблица разделов (partition table) также расположена в начале диска, ее задача - хранить информацию о разделах: начало, длина, загрузка. На загрузочном разделе расположен загрузочный сектор (boot sector), хранящий программу загрузки операционной системы.

Отсчет начинается от MBR (от сектора с номером 0) для всех основных (primary) разделов, как для обычных, так и для расширенного, и только для основных.
Все обычные логические (not extended logical) разделы задаются сдвигом относительно начала того расширенного раздела, в котором они описаны.
Все расширенные логические (extended logical) разделы задаются сдвигом относительно начала основного расширенного раздела (extended primary).

Процесс загрузки операционной системы выглядит следующим образом:
При включении компьютера управление процессором получает BIOS ,идет загрузка (boot) с винчестера, подгружается в оперативную память компьютера первый сектор диска (MBR) и передается ему управление).

В MBR может быть записан как "стандартный" загрузчик,

так и загрузчики типа LILO/GRUB.

Стандартный загрузчик находит в таблице основных разделов первый раздел с флагом bootable (загрузочный), считывает его первый сектор (boot-сектор) и передает управление коду, записанному в этом boot-секторе. Если вместо стандартного загрузчика MBR стоит другой, то он не смотрит на флаг bootable, может загружать с любого раздела (прописанных в его настройках).

Например для загрузки операционной системы Windows NT/2k/XP/2003 в boot-секторе записывается код, загружающий с текущего раздела в память основной загрузчик (ntloader).
Для каждой файловой системы FAT16/FAT32/NTFS используется свой загрузчик. В корне раздела обязательно должен присутствовать файл ntldr. Если вы видете при попытке загрузить Windows сообщение "NTLDR is missing", то это как раз тот случай, когда файл ntldr отсутствует. Также для нормальной работы ntldr возможно нужны файлы bootfont.bin, ntbootdd.sys, ntdetect.com и правильно написанный boot.ini.

Пример boot.ini

C:\boot.ini

timeout=8
default=C:\gentoo.bin

C:\gentoo.bin="Gentoo Linux"
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows XP (32-bit)" /fastdetect /NoExecute=OptIn
multi(0)disk(0)rdisk(0)partition(3)\WINDOWS="Windows XP (64-bit)" /fastdetect /usepmtimer

Пример конфигурационного файла grub.conf

#grub.conf generated by anaconda
#
#Note that you do not have to rerun grub after making changes to this file
#
#NOTICE: You have a /boot partition. This means that
#all kernel and initrd paths are relative to /boot/, eg.
#root (hdO.O)
#kernel /vmlinuz-version ro root=/dev/sda2
#initrd /initrd-version.img
#boot=/dev/sda default=0 timeout=5
splashimage=(hdO,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux server (2.6.18-53.el 5)
root (hdO.O)
kernel /vmlinuz-2.6.18-53.el5 ro root=LABEL=/ rhgb quiet-
initrd /initrd-2.6.18-53.el5.img

Структура файла lilo.conf

# LILO configuration file generated by "liloconfig"
//Секция описания глобальных параметров
# Start LILO global section
//Место, куда записан Lilo. В данном случае это MBR
boot = /dev/hda
//Сообщение, которое выводится при загрузке
message = /boot/boot_message.txt
//Вывод приглашения
prompt
//Time Out на выбор операционной системы
timeout = 1200
# Override dangerous defaults that rewrite the partition table:
change-rules
reset
# VESA framebuffer console @ 800x600x256
//Выбор видеорежима отображения меню
vga = 771
# End LILO global section
//Секция описания параметров загрузки windows
# DOS bootable partition config begins
other = /dev/hda1
label = Windows98
table = /dev/hda
# DOS bootable partition config ends
//Секция описания параметров загрузки QNX
# QNX bootable partition config begins
//Путь к операцционной системе
other = /dev/hda2
label = QNX
table = /dev/hda
# QNX bootable partition config ends
//Секция описания параметров загрузки Linux
# Linux bootable partition config begins
//Путь к образу ядра
image = /boot/vmlinuz
root = /dev/hda4
label = Slackware
read-only
# Linux bootable partition config ends


2.Наиболее известные файловые системы.

  • Advanced Disc Filing System
  • AdvFS
  • Be File System
  • CSI - DOS
  • Encrypting File System
  • Extended File System
  • Second Extended File System
  • Third Extended File System
  • Fourth Extended File System
  • File Allocation Table (FAT)
  • Files - 11
  • Hierarchical File System
  • HFS Plus
  • High Perfomance File System (HPFS)
  • ISO 9660
  • Journaled File System
  • Macintosh File System
  • MINIX file system
  • MicroDOS
  • Next3
  • New Implementation of a Log-structured F (NILFS)
  • Novell Storage Services
  • New Technology File System (NTFS)
  • Protogon
  • ReiserFS
  • Smart File System
  • Squashfs
  • Unix File System
  • Universal Disk Format (UDF)
  • Veritas File System
  • Windows Future Storage (WinFS)
  • Write Anywhere File Layout
  • Zettabyte File System (ZFS)

3.Основные характеристики файловых систем.

Операционная система предоставляет приложениям набор функций и структур для работы с файлами. Возможности операционной системы накладывают дополнительные ограничения на ограничения файловой системы, к основным ограничениям можно отнести:

Максимальный (минимальный) размер тома;
- Максимальное (минимальное) количество файлов в корневом каталоге;
- Максимальное количество файлов в некорневом каталоге;
- Безопасность на уровне файлов;
- Поддержка длинных имен файлов;
- Самовосстановление;
- Сжатие на уровне файлов;
- Ведение журналов транзакций;

4.Краткое описание наиболее распространенных файловых систем FAT, NTFS, EXT.

Файловая система FAT .

FAT (file allocation table) означает «таблица размещения файлов».
В файловой системе FAT логическое дисковое пространство любого логического диска делится на две области:
- системную область;
- область данных.
Системная область создается при форматировании и обновляется при манипулировании файловой структурой. Область данных содержит файлы и каталоги, подчиненные корневому, и доступна через пользовательский интерфейс. Системная область состоит из следующих компонентов:
- загрузочной записи;
- зарезервированных секторов;
- таблицы размещения файлов (FAT);
- корневого каталога.
Таблица размещения файлов представляет собой карту (образ) области данных, в которой описывается состояние каждого участка области данных. Область данных разбивается на кластеры. Кластер – один или несколько смежных секторов в логическом дисковом адресном пространстве (только в области данных). В таблице FAT кластеры, принадлежащие одному файлу (некорневому каталогу), связываются в цепочки. Для указания номера кластера в системе управления файлами FAT16 используется 16-битовое слово, следовательно, можно иметь до 65536 кластеров.
Кластер – минимальная адресуемая единица дисковой памяти, выделяемая файлу или некорневому каталогу. Файл или каталог занимает целое число кластеров. Последний кластер при этом может быть задействован не полностью, что приведет к заметной потере дискового пространства при большом размере кластера.
Так как FAT используется при доступе к диску очень интенсивно, она загружается в ОЗУ и находится там максимально долго.
Корневой каталог отличается от обычного каталога тем, что он размещается в фиксированном месте логического диска и имеет фиксированное число элементов. Для каждого файла и каталога в файловой системе хранится информация в соответствии со следующей структурой:
- имя файла или каталога – 11 байт;
- атрибуты файла – 1 байт;
- резервное поле – 1 байт;
- время создания – 3 байта;
- дата создания – 2 байта;
- дата последнего доступа – 2 байта;
- зарезервировано – 2 байта;
- время последней модификации – 2 байта;
- номер начального кластера в FAT – 2 байта;
- размер файла – 4 байта.
Структура системы файлов является иерархической.

Файловая система FAT32.
FAT32 является полностью независимой 32-разрядной файловой системой и содержит многочисленные усовершенствования и дополнения по сравнению с FAT16. Принципиальное отличие FAT32 заключается в более эффективном использовании дискового пространства: FAT32 использует кластеры меньшего размера, что приводит к экономии дискового пространства.
FAT32 может перемещать корневой каталог и использовать резервную копию FAT вместо стандартной. Расширенная загрузочная запись FAT32 позволяет создавать копии критических структур данных, что повышает устойчивость дисков к нарушениям структуры FAT по сравнению с предыдущими версиями. Корневой каталог представляет собой обычную цепочку кластеров, поэтому может находиться в произвольном месте диска, что снимает ограничение на размер корневого каталога.


Файловая система NTFS.
Файловая система NTFS (New Technology File System) содержит ряд значительных усовершенствований и изменений, существенно отличающих ее от других файловых систем. С точки зрения пользователей файлы по-прежнему хранятся в каталогах, но работа на дисках большого объема в NTFS происходит намного эффективнее:
- имеются средства для ограничения доступа к файлам и каталогам;
- введены механизмы, существенно повышающие надежность файловой системы;
- сняты многие ограничения на максимальное количество дисковых секторов и/или кластеров.

Основные характеристики файловой системы NTFS:
- надежность. Высокопроизводительные компьютеры и системы совместного использования должны обладать повышенной надежностью, для этой цели введен механизм транзакций, при котором ведется журналирование файловых операций;
- расширенная функциональность. В NTFS введены новые возможности: усовершенствованная отказоустойчивость, эмуляция других файловых систем, мощная модель безопасности, параллельная обработка потоков данных, создание файловых атрибутов, определенных пользователем;
- поддержка стандарта POSIX. К числу базовых средств относятся необязательное использование имен файлов с учетом регистра, хранение времени последнего обращения к файлу и механизм альтернативных имен, позволяющий ссылаться на один и тот же файл по нескольким именам;
- гибкость. Распределение дискового пространства отличается большой гибкостью: размер кластера может изменяться от 512 байт до 64 Кбайт.
NTFS хорошо работает с большими массивами данных и большими томами. Максимальный размер тома (и файла) – 16 Эбайт. (1 Эбайт равен 2**64 или 16000 млрд. гигабайт.) Количество файлов в корневом и некорневом каталогах не ограничено. Поскольку в основу структуры каталогов NTFS заложена эффективная структура данных, называемая «бинарным деревом», время поиска файлов в NTFS не связано линейной зависимостью с их количеством.
Система NTFS обладает некоторыми средствами для самовосстановления и поддерживает различные механизмы проверки целостности системы, включая ведение журнала транзакций, позволяющий отследить по системному журналу файловые операции записи.
Файловая система NTFS поддерживает объектную модель безопасности и рассматривает все тома, каталоги и файлы как самостоятельные объекты NTFS. Права доступа к томам, каталогам и файлам зависит от учетной записи пользователя и той группы, к которой он принадлежит.
Файловая система NTFS обладает встроенными средствами сжатия, которые можно применять к томам, каталогам и файлам.

Файловая система Ext3.
Файловая система ext3 может поддерживать файлы размером до 1 ТБ. С Linux-ядром 2.4 объём файловой системы ограничен максимальным размером блочного устройства, что составляет 2 терабайта. В Linux 2.6 (для 32-разрядных процессоров) максимальный размер блочных устройств составляет 16 ТБ, однако ext3 поддерживает только до 4 ТБ.
Ext3 имеет хорошую совместимость с NFS и не имеет проблемы с производительностью при дефиците свободного дискового пространства.Еще одно достоинство ext3 происходит из того, что она основана на коде ext2. Дисковый формат ext2 и ext3 идентичен; из этого следует, что при необходимости ext3 filesystem можно монтировать как ext2 без каких либо проблем. И это еще не все. Благодаря факту, что ext2 и ext3 используют идентичные метаданные, имеется возможность оперативного обновления ext2 в ext3.
Надежность Ext3
В дополнение к ext2-compatible, ext3 наследует другие преимущества общего формата metadata. Пользователи ext3 имеют в своем распоряжении годами проверенный fsck tool. Конечно, основная причина перехода на journaling filesystem - отказ от необходимости периодических и долгих проверок непротиворечивости метаданных на диске. Однако "журналирование" не способно защитить от сбоев ядра или повреждения поверхности диска (или кое-чего подобного). В аварийной ситуации вы оцените факт преемственности ext3 от ext2 с ее fsck.
Журнализация в ext3.
Теперь, когда имеется общее понимание проблемы, посмотрим, как ext3 осуществляет journaling. В коде журнализации для ext3 используется специальный API, называемый Journaling Block Device layer или JBD. JBD был разработан для журнализации на любых block device. Ext3 привязана к JBD API. При этом код ext3 filesystem сообщает JBD о необходимости проведения модификации и запрашивает у JBD разрешение на ее проведение. Журналом управляет JBD от имени драйвера ext3 filesystem. Такое соглашение очень удобно, так как JBD развивается как отдельный, универсальный объект и может использоваться в будущем для журналирования в других filesystems.
Защита данных в Ext3
Теперь можно поговорить о том, как ext3 filesystem обеспечивает журнализацию и data, и metadata. Фактически в ext3 имеются два метода гарантирования непротиворечивости.
Первоначально ext3 разрабатывалась для журналирования full data и metadata. В этом режиме (называется "data=journal" mode), JBD журналирует все изменения в filesystem, связанные как с data, так и с metadata. При этом JBD может использовать журнал для отката и восстановления metadata и data. Недостаток "полного" журналирования в достаточно низкой производительности и расходе большого объема дискового пространства под журнал.
Недавно для ext3 был добавлен новый режим журналирования, который сочетает высокую производительность и гарантию непротиворечивости структуры файловой системы после сбоя (как у "обычных" журналируемых файловых систем). Новый режим работы обслуживает только metadata. Однако драйвер ext3 filesystem по-прежнему отслеживает обработку целых блоков данных (если они связаны с модификацией метаданных), и группирует их в отдельный объект, называемый transaction. Транзакция будет завершена только после записи на диск всех данных. "Побочный" эффект такой "грубой" методики (называемой "data=ordered" mode) - ext3 обеспечивает более высокую вероятность сохранности данных (по сравнению с "продвинутыми" журналируемыми файловыми системами) при гарантии непротиворечивости metadata. При этом происходит журналирование изменений только структуры файловой системы. Ext3 использует этот режим по умолчанию.
Ext3 имеет множество преимуществ. Она разработана для максимальной простоты развертывания. Она основана на годами проверенном коде ext2 и получила "по наследству" замечательный fsck tool. Ext3 в первую очередь предназначена для приложений, не имеющих встроенных возможностей по гарантированию сохранности данных. В целом, ext3 - замечательная файловая система и достойное продолжение ext2.Есть еще одна характеристика, положительно отличающая ext3 от остальных journaled filesystems под Linux - высокая надежность.

Файловая система ext4 является достойным эволюционным продолжением системы ext.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows