Системная шина. Компьютерная шина

Системная шина. Компьютерная шина

11.09.2019

Изучив эту тему, вы узнаете:

Какова структурная схема компьютера;
- что такое принцип программного управления;
- в чем состоит назначение системной шины;
- что означает принцип открытой архитектуры, используемый при построении компьютера.

Структурная схема компьютера

В предыдущих темах вы познакомились с назначением и характеристиками основных устройств компьютера. Очевидно, что все эти устройства не могут работать по отдельности, а только в составе всего компьютера. Поэтому для понимания того, как компьютер обрабатывает информацию, нёобходимо рассмотреть структуру компьютера и основные принципы взаимодействия его устройств.

В соответствии с назначением компьютера как инструмента обработки информации взаимодействие входящих в него устройств должно быть организовано таким образом, чтобы обеспечить основные этапы обработки данных.

Для пояснения сказанного рассмотрим приведенную на рисунке 21.1 структурную схему обработки информации компьютером, на которой в верхнем ряду указаны уже знакомые вам по разделу 1 основные этапы этого процесса. Выполнение каждого из этих этапов определяется наличием в структуре компьютера соответствующих устройств. Очевидно, что ввод и вывод информации осуществляется с помощью устройств ввода (клавиатура, мышь и др.) и вывода (монитор, принтер и др.). Для хранения информации используются внутренняя и внешняя память на различных носителях (магнитные или оптические диски, магнитные ленты и пр.).

Рис. 21.1. Структурная схема компьютера

Темные стрелки обозначают обмен информацией между различными устройствами компьютера. Пунктирные линии со стрелками символизцруют управляющие сигналы, которые поступают от процессора. Светлые пустые стрелки отображают потоки входной и выходной информации соответственно.

Компьютер представляет собой систему взаимосвязанных компонентов. Конструктивно все основные компоненты компьютера объединены в системном блоке, который является важнейшей частью персонального компьютера.

Системный блок и системная плата

Внутри системного блока располагаются следующие устройства:

♦ микропроцессор;
♦ внутренняя память компьютера;
♦ дисководы - устройства внешней памяти;
♦ системная шина;
♦ электронные схемы, обеспечивающие связь различных компонентов компьютера;
♦ электромеханическая часть компьютера, включающая блок питания, системы вентиляции, индикации и защиты. 

Компоновка компьютера IBM 286

Компоновка современного ПК

Все перечисленные устройства, входящие в состав системного блока, помещены в корпус, причем существуют различные типы корпусов. Тип корпуса системного блока зависит от вида персонального компьютера и определяет размер, размещение и количество устанавливаемых компонентов системного блока. Для стационарных персональных компьютеров наиболее распространенными корпусами являются горизонтальные или настольные (desktop) либо в виде башни (tower). В портативных компьютерах системный блок объединен с монитором и выполнен в стандарте booksize, то есть размером с книгу.

Технической (аппаратной) основой персонального компьютера является системная, или материнская, плата.

Системная плата является главной платой в системном блоке компьютера. На ней расположены важнейшие микросхемы - процессор и память. Системная плата связывает в единое целое различные устройства, обеспечивает условия работы и связь основных компонентов персонального компьютера. Процессор обеспечивает не только преобразование информации, но и управление работой всех остальных устройств компьютера.

В основе работы компьютера лежит так называемый принцип программного управления. В соответствии с ним команды программы и данные хранятся в закодированном виде в оперативной памяти. При работе компьютера команды, которые необходимо выполнить, и данные, которые им требуются, вчитываются по очереди из памяти и поступают в процессор, где они расшифровываются, а затем выполняются. Результаты выполнения различных команд, в свою очередь, могут быть записаны в память или переданы на различные устройства вывода. Скорость выполнения процессором операций по обработке информации является решающим фактором, определяющим его производительность. Дело в том, что любая информация (числа, текст, рисунки, музыка и т. д.) хранится и обрабатывается на компьютере только в цифровой форме. Поэтому ее обработка сводится к выполнению процессором различных арифметических и логических операций, предусмотренных его системой команд.

Системная шина

Для обеспечения информационного обмена между различными устройствами компьютера в нем должна быть предусмотрена ка- кая-то магистраль для перемещения потоков информации. Поясним эту мысль небольшим примером.

Вы знаете, что жизнь большого города - это постоянные потоки людей и транспортных средств, двигающихся в различных направлениях. Часто скорость транспортного или людского потока зависит не от скорости машины, велосипеда или пешехода, а от пропускной способности транспортной сети города, от его подземных и наземных магистралей.

В компьютере происходит движение не транспортных, а информационных потоков по соответствующей информационной магистрали. Роль такой информационной магистрали, связывающей друг с другом все устройства компьютера, выполняет системная шина, расположенная внутри системного блока. Упрощенно системную шину можно представить как группу кабелей и электрических (токопроводящих) линий на системной плате.

Все основные блоки персонального компьютера подсоединены к системной шине (рисунок 21.2). Основной ее функцией является обеспечение взаимодействия между процессором и остальными электронными компонентами компьютера. По этой шине осуществляется передача данных, адресов памяти и управляющей информации.

Рис. 21.2. Назначение системной шины

От типа системной шины, так же как и от типа процессора, зависит скорость обработки информации персональным компьютером. К основным характеристикам системной шины относятся разрядность и производительность канала связи.

Разрядность шины определяет количество бит информации, передаваемых одновременно от одного устройства к другому.

Системные шины первых персональных компьютеров могли передавать только 8 бит информации, используя для этого 8 линий данных в виде 8 параллельных проводников. Дальнейшее развитие компьютеров привело к созданию 16-битной системной шины, а затем ее разрядность увеличилась до 32 и далее до 64 бит. Увеличение разрядности шины данных привело к повышению скорости обмена информацией, а увеличение разрядности адресной шины обеспечило больший объем оперативной памяти.

Производительность шины определяется объемом информации, который можно передать по ней за одну секунду.

Подобно транспортным магистралям, пропускная способность которых зависит от количества полос движения на дороге, производительность системной шины во многом определяется ее разрядностью. Чем выше разрядность шины, тем больше бит информации одновременно может передаваться по ней, например из процессора в память. Это приводит к более быстрому обмену данными и освобождению процессора для решения других задач.

Однако системная шина как основная информационная магистраль не может обеспечить достаточную производительность для внешних устройств. Для решения этой проблемы в компьютере стали использовать локальные шины, которые связывают микропроцессор с различными устройствами памяти, ввода и вывода. Назначение локальных шин сходно с назначением окружных или кольцевых дорог вокруг большого города, которые разгружают основные магистрали.

Порты

Связь компьютера с различными устройствами ввода и вывода осуществляется через порты. Для некоторых устройств предусмотрено внешнее подключение к портам через разъемы, которые обычно тоже называют портами. Эти разъемы расположены на тыльной стороне системного блока. Дисководы гибких, жестких и лазерных дисков устанавливаются и подключаются внутри системного блока. Различают проводные (последовательные и параллельные, USB, Fire Wire ) и беспроводные (инфракрасные, Bluetooth ) порты. 

Параллельные порты

Этот тип портов используется для подсоединения внешних устройств, которым необходимо передавать большой объем информации на близкое расстояние. Через параллельный порт обычно передается одновременно 8 бит данных по 8 параллельным проводникам. К параллельному порту подключаются принтер, сканер. Число параллельных портов у компьютера не превышает трех, и они имеют соответственно логические имена LPT1, LPT2, LPT3 (от англ. Line PrinTer - линия принтера).


Последовательные порты

Данный тип портов используется для подключения к системному блоку мыши, модемов и многих других устройств. Через такой порт идет последовательный поток данных по 1 биту. Это можно сопоставить с тем, как происходит движение транспорта по дороге с одной полосой. Последовательная передача данных используется на больших расстояниях. Поэтому последовательные порты часто называют коммуникационными. Количество коммуникационных портов не превышает четырех, и им присвоены имена от СОМ1 до COM4 (англ. COMmunication port - коммуникационный порт).

USB-порт

USB-порт (англ. Universal Serial Bus) в настоящее время является наиболее распространенным средством подключения к компьютеру среднескоростных и низкоскоростных периферийных устройств. USB-порт использует последовательный способ обмена данными. Наибольшее распространение получил высокоскоростной порт типа USB 2.0. Если в компьютере не хватает USB-портов, то этот недостаток можно устранить приобретением USB-концентратора, имеющего несколько таких портов.

Благодаря встроенным линиям питания USB часто позволяет применять устройства без собственного блока питания.

FireWire-порт

FireWire (IEEE 1394) - долсловно - огненный провод (произносится "файр вайр") - это последовательный порт, поддерживающий скорость передачи данных в 400 Мбит/сек. Этот порт служит для подключения к компьютеру видео устройств, таких как, например, видеомагнитофон, а также других устройств, требующих быстрой передачи большого объема информации, например, внешних жестких дисков.

Порты FireWire поддерживают технологию Plug and Play и "горячего подключения".

Порты FireWire бывают двух типов. В большинстве настольных компьютерах используются 6-контактные порты, а в ноутбуках - 4-контактные.

Инфракрасный порт беспроводного подключения

Передача данных осуществляется по оптическому каналу в инфракрасном диапазоне. Аналогично работают пульты дистанционного управления бытовой техникой - телевизорами, видеомагнитофонами и пр. Радиус действия инфракрасного порта составляет несколько метров, при этом необходимо обеспечить прямую видимость между приемником и передатчиком.

Инфракрасный порт обычно используется для соединения с мобильным телефоном, обладающим таким же портом. Это позволяет реализовать доступ в Интернет с использованием мобильного телефона, что наиболее важно для портативных ноутбуков в нестационарных условиях.

Модуль Bluetooth беспроводного подключения

Один адаптер Bluetooth позволяет осуществить беспроводное подключение порядка 100 устройств, находящихся на расстоянии до 10 м. При этом к компьютеру, оснащенному таким адаптером, можно подключать разнотипные беспроводные устройства: мобильные телефоны, принтеры, мыши, клавиатуры и пр. Передача данных осуществляется по радиоканалу в частотном диапазоне 2,2-2,4 ГГц. Главное достоинство - устойчивая связь независимо от взаиморасположения приемника и передатчика. Если в компьютере нет встроенного модуля Bluetooth, то его можно приобрести отдельно и подключить по USB-порту.

Прочие компоненты системной платы

Системная плата, кроме перечисленных выше важнейших компонентов компьютера, содержит дополнительные микросхемы, переключатели и перемычки. Все эти устройства необходимы для обеспечения взаимодействия различных устройств компьютера, установки режимов их работы. Например, на системной плате могут быть установлены микросхемы, которые требуют различного напряжения питания. Параметры работы устройств задаются переключателями на системной плате.

В любом системном блоке находятся обязательные узлы, обеспечивающие работу компьютера, - блок питания, системные часы, аккумулятор, сигнальные индикаторы передней стороны системного блока.

Системные часы определяют скорость выполнения компьютером операций, которая связана с тактовой частотой, измеряемой в мегагерцах (1 МГц равен 1 млн тактов в секунду).

Системные часы определяют ритм работы всего компьютера, синхронизируют работу большинства компонентов его системной платы.

Платы и слоты расширения обеспечивают реализацию так называемого принципа открытой архитектуры построения современного персонального компьютера. Слотом называется разъем, куда вставляется плата. Наличие слотов расширения на системной плате позволяет рассматривать персональный компьютер как устройство, которое можно модифицировать. Расширение возможностей компьютера осуществляется путем установки в слоте платы расширения. К разъему этой платы с помощью кабеля присоединяется некоторое устройство, расположенное вне системного блока.

Вместо термина «плата расширения» часто используют названия «карта», «адаптер». К наиболее распространенным платам расширения относятся видеокарты, звуковые карты и внутренние модемы. 

Представление об открытой архитектуре компьютера

Технология производства компьютеров быстро развивается, что обеспечивает непрерывный рост их производительности, объема памяти и как результат - возможностей решать все более сложные задачи. Стремительно совершенствуются одни устройства, создаются другие, принципиально новые. При столь бурном развитии технологии необходимо предусмотреть такой принцип построения компьютера, который позволял бы использовать уже имеющиеся в нем устройства (блоки), а также без изменения конструкции заменять их на новые, более совершенные. Как города строятся по законам архитектуры, так и устройство компьютера должно развиваться по определенным законам. Главный принцип построения современного персонального компьютера - это принцип открытой архитектуры: каждый новый блок должен быть программно и аппаратно совместим с ранее созданными. Это означает, что современный персональный компьютер упрощенно можно представить как знакомый всем детский конструктор из кубиков. В компьютере столь же легко можно заменять старые кубики (блоки) на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но становится более производительной. Именно принцип открытой архитектуры позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а также приобретать и устанавливать новые блоки и узлы. При этом места для их установки (разъемы) во всех компьютерах являются стандартными и не требуют никаких изменений в самой конструкции компьютера.

Принцип открытой архитектуры - правила построения компьютера, в соответствии с которыми каждый новый узел (блок) должен быть совместим со старым и легко устанавливаться в том же месте в компьютере.

Контрольные вопросы

1. Какие основные блоки образуют структуру компьютера и как они связаны с этапами обработки информации?

2. Какова роль процессора персонального компьютера в обработке информации?

3. Что такое принцип программного управления?

4. Каковы назначение и основные компоненты системного блока?

5. Какие виды корпусов системного блока вам известны?

6. Для чего нужна системная плата?

7. Каково назначение системной шины в персональном компьютере?

8. В чем состоит аналогия между системной шиной и транспортными магистралями?

9. Какие вы знаете характеристики системной шины?

10. Что такое порт компьютера? Какие виды портов бывают и в чем их различие?

11. Зачем нужны платы расширения?

12. Для чего необходимо иметь слоты расширения?

13. В чем состоит принцип открытой архитектуры?

14. Что вам известно из художественной литературы, научно-популярных изданий, из телевизионных передач и кинофильмов о возможностях и использовании компьютеров будущего?

Системная шина предназначена для реализации связи процессора с внешними устройствами в компьютере при помощи специальных устройств управления - адаптеров или контроллеров. Все последние присоединены к системной шине при помощи типовых разъемов. Шины принято делить на три категории по функциональному назначению: адресные, информационные и управляющие, которые различаются разрядностью, то есть численностью данных, проходящих через них. Тип используемого устройства во многом определяется скоростью работы компьютера.

Системная шина может работать в следующих основных стандартах: MCA, ISA, VESA, EISA, PCI. Долгое время шина ISA считалась определенным стандартом в области персональных компьютеров. Ее разработали на базе восьмиразрядной системной шины XT и IBM PC. В ней было предусмотрено восемь линий прерываний для сопряжения с внешними устройствами, а также четыре линии для доступа к памяти напрямую.

Работа системной шины и микропроцессора осуществлялась на частоте 4,77 МГц. А скорость могла составлять примерно 4,5 Мбайт за секунду. В следующем поколении компьютеров уже использовалась шестнадцатиразрядная шина, которая благодаря 24-адресным линиям разрешала осуществлять прямое обращение к оперативной памяти, в то время ее объем составлял 16 Мбайт.

В этой шине уже было использовано шестнадцать аппаратных прерываний вместо восьми, а численность каналов для прямого доступа к информации составляла уже восемь, а не четыре. Теперь шина работает асинхронно с микропроцессором на частоте 6 МГц, а это стало причиной увеличения скорости передачи до 16 Мбайт за секунду. Теперь она уже предоставляла возможность для работы с низкоскоростными устройствами, но не могли обеспечить эффективного функционирования современных устройств. Это повлияло новых видов системных шин.

В 1987 году была разработана системная шина МСА, которая стала первой с высокой производительностью. Она отличалась тем, что ее скорость работы была 10 МГц, а сама шина уже стала 32-разрядной, что увеличило скорость передачи до 20 Мбайт в секунду. Однако из-за несовместимости шин между собой отсутствовала возможность использования контроллеров, предназначенных для шины ISA, из-за чего архитектура не нашла обширного применения.

Системная шина EISA была разработана в 1989 году, она стала расширенной версией ISA. Ее разъемы позволяли вставить не только собственные контроллеры, а и таковые для ISA. Она работала с частотой 8-10 МГц, при этом ее разрядность составляет 32, что позволяет направлять до 4 Гбайт, достигая скорости обмена информацией 33 Мбайт в секунду. Недостатком этой шины является малая скорость обмена информацией при обработке графики, изображений, а также относительно высокая цена контроллеров.

Была разработана для нового процессора Pentium, но может быть использована и на прочих платформах. Она позволяет подключить к себе до десяти различных устройств. В этой шине используется 32 или 64 разряда, а скорость передачи составляла 132 и 264 Мбайт в секунду.

Сейчас системные платы соединяются с прочими устройствами посредством шины AGP, позволяющей графической карте пользоваться оперативной памятью персонального компьютера. Она оказалась способной справиться с современной графикой, которая должна перемещаться по монитору с высокой скоростью, с чем сложно справиться PCI. При использовании PCI оказывалось нецелесообразно наращивать память на видеоадаптере из-за ограниченности скорости работы и пропускной способности шины. Частота системной шины AGP позволяет осуществлять обмен информацией между видеопамятью и оперативной памятью напрямую, чего нельзя добиться при использовании других стандартов этих устройств.


Компоненты внутри РС взаимодействуют друг с другом различными способами. Большинство внутренних компонентов, включая процессор, кэш, память, карты расширения и запоминающие устройства взаимодействуют друг с другом с помощью одной или нескольких шин (buses).

Шина в компьютерах представляет собой канал, по которому передается информация между двумя или несколькими устройствами (обычно шина, соединяющая только два устройства, называется портом - port). Шина обычно имеет точки доступа, или места, к которым может подключиться устройство для превращения себя в часть шины, а устройства на шине могут посылать информацию другим устройствам и принимать информацию от других устройств. Понятие шины является довольно общим как для "внутренности" РС, так и для внешнего мира. Например, телефонное соединение в доме можно считать шиной: информация передается по проводникам в доме и можно подключиться к "шине", установив телефонную розетку, подключив к ней телефон и подняв трубку телефона. Все телефоны на шине могут разделять (share) информацию, т.е. речь.

Этот материал посвящен шинам современных РС. Вначале обсуждаются шины и их характеристики, а затем подробно рассматриваются наиболее распространенные в мире РС шины ввода-вывода (Input/Output bus), называемые также шинами расширения (expansion buses).

Функции и характеристики шин

Шины РС являются основными "трактами" данных на материнской плате. Главной из них является системная шина (system bus), которая соединяет процессор и основную память RAM. Раньше эта шина называлась локальной, а в современных РС называется передней шиной (Front Side Bus - FSB). Характеристики системной шины определяются процессором; современная системная шина имеет ширину 64 бита и работает на частоте 66, 100 или 133 МГц. Сигналы такой высокой частоты создают электрические помехи и ставят другие проблемы. Следовательно, частоту необходимо снизить, чтобы данные достигали карт расширения (expansion card), или адаптеров (adapters), и других более удаленных компонентов.

Однако первые РС имели только одну шину, которая была общей для процессора, памяти RAM и компонентов ввода-вывода. Процессоры первого и второго поколений работали с низкой частотой синхронизации и все компоненты системы могли поддерживать такую частоту. В частности, такая архитектура позволяла расширять емкость RAM с помощью карт расширения.

В 1987 г. разработчики компании Compaq решили отделить системную шину от шины ввода-вывода с тем, чтобы они могли работать с различной скоростью. С тех пор такая многошинная архитектура стала промышленным стандартом. Более того, современные РС имеют несколько шин ввода-вывода.

Иерархия шин

В РС имеется иерархическая организация различных шин. Большинство современных РС имеет, как минимум, четыре шины. Иерархия шин объясняется тем, что каждая шина все больше отдаляется от процессора; каждая шина подключается к находящемуся выше ее уровню, объединяя различные компоненты РС. Каждая шина обычно медленнее шины, находящейся выше ее (по очевидной причине - процессор является наиболее быстрым устройством в РС):

  • Шина внутреннего кэша: Это самая быстрая шина, которая соединяет процессор и внутренний L1-кэш.
  • Системная шина: Это системная шина второго уровня, которая соединяет подсистему памяти с чипсетом и процессором. В некоторых системах шины процессора и памяти представляют собой одно и то же. Эта шина до 1998 г. работала со скоростью (частотой синхронизации) 66 МГц, а затем она была повышена до 100 МГц и даже 133 МГц. В процессорах Pentium II и выше реализована архитектура с двойной независимой шиной (Dual Independent Bus - DIB) - единственная системная шина заменена на две независимые шины. Одна из них предназначена для доступа к основной памяти и называется передней шиной (frontside bus), а вторая - для доступа к L2-кэшу и называется задней шиной (backside bus). Наличие двух шин повышает производительность РС, так как процессор может одновременно получать данные с обеих шин. В материнских платах и чипсетах пятого поколения L2-кэш подключен к стандартной шине памяти. Отметим, что системную шину называют также основной шиной (main bus), шиной процессора (processor bus), шиной памяти (memory bus) и даже локальной шиной (local bus).
  • Локальная шина ввода-вывода: Эта быстродействующая шина ввода-вывода используется для подключения быстрых периферийных устройств к памяти, чипсету и процессору. Такую шину используют видеокарты, дисковые накопители и сетевые интерфейсы. Наиболее распространенными локальными шинами ввода-вывода являются VESA Local Bus (VLB) и шина Peripheral Component Interconnect (PCI).
  • Стандартная шина ввода-вывода: К рассмотренным трем шинам подключается "заслуженная" стандартная шина ввода-вывода, которая применяется для медленных периферийных устройств (мышь, модем, звуковые карты и др.), а также для совместимости со старыми устройствами. Почти во всех современных РС такой шиной является шина ISA (Industry Standard Architecture - стандартная промышленная архитектура).
  • Универсальная последовательная шина (Universal Serial Bus - USB), позволяющая подключать до 127 медленных периферийных устройств с использованием хаба (hub) или шлейфного соединения (daisy-chaining) устройств.
  • Скоростная последовательная шина IEEE 1394 (FireWire) , предназначенная для подключения к РС цифровых камер, принтеров, телевизоров и других устройств, требующих исключительно высокой пропускной способности.

Несколько шин ввода-вывода, соединяющие различные периферийные устройства с процессором, подключаются к системной шине с помощью моста (bridge), реализованного в чипсете. Системный чипсет управляет всеми шинами и обеспечивает, что каждое устройство в системе правильно взаимодействует с каждым другим устройством.

В новых РС есть дополнительная "шина", которая специально предназначена только для графического взаимодействия. Фактически это не шина, а порт - ускоренный графический порт (Accelerated Graphics Port - AGP). Различие между шиной и портом заключается в том, что шина обычно рассчитана на разделение носителя несколькими устройствами, а порт предназначен только для двух устройств.

Как показано ранее, шины ввода-вывода фактически являются расширением системной шины. На материнской плате системная шина заканчивается микросхемой чипсета, которая образует мост к шине ввода-вывода. Шины играют важнейшую роль в обмене данными в РС. Фактически все компоненты РС, за исключением процессора, взаимодействуют друг с другом и системной памятью RAM через различные шины ввода-вывода, как показано на рисунке слева.

Шины адреса и данных

Каждая шина состоит из двух разных частей: шина данных (data bus) и шина адреса (address bus). Говоря о шине, большинство людей понимает именно шину данных; по линиям этой шины передаются собственно данные. Шина адреса представляет собой набор линий, сигналы на которых определяют, куда передавать или откуда принимать данные.

Конечно, имеются сигнальные линии для управления функционированием шины и сигнализации о доступности данных. Иногда эти линии называются шиной управления (control bus), хотя часто они и не упоминаются.

Ширина шины

Шина - это канал, по которому "течет" информация. Чем шире шина, тем больше информации может "течь" по каналу. Первая шина ISA в IBM PC имела ширину 8 битов; используемая сейчас универсальная шина ISA имеет ширину 16. Другие шины ввода-вывода, включая VLB и PCI, имеют ширину 32 бита. Ширина системной шины в РС с процессорами Pentium составляет 64 бита.

Ширину шины адреса можно определять независимо от ширины шины данных. Ширина шины адреса показывает, сколько ячеек памяти можно адресовать при передаче данных. В современных РС ширина шины адреса составляет 36 битов, что обеспечивает адресацию памяти емкостью 64 ГБ.

Скорость (быстродействие) шины

Скорость шины (bus speed) показывает, сколько битов информации можно передавать по каждому проводнику шины в секунду. Большинство шин передают по одному проводнику один бит в такте синхронизации, хотя новые шины, например AGP, могут передавать два бита данных в такте синхронизации, что удваивает производительность. В старой шине ISA для передачи одного бита требуются два такта синхронизации, что снижает производительность вдвое.

Ширина полосы пропускания шины

Ширина (битов)

Скорость (МГц)

Пропускная способность (МБ/с)

8-битовая ISA

16-битовая ISA

64-битовая PCI 2.1

AGP (режим x2)

AGP (режим x4)


Ширина полосы пропускания (bandwidth) называется также пропускной способностью (throughput) и показывает общий объем данных, который можно передать по шине за данную единицу времени. В таблице приведены теоретические пропускные способности современных шин ввода-вывода. Фактически шины не достигают теоретического показателя из-за служебных потерь на выполнение команд и других факторов. Большинство шин может работать с различной скоростью; в следующей таблице приведены наиболее типичные значения.

Сделаем замечание относительно четырех последних строк. Теоретически шину PCI можно расширить до 64 битов и скорости 66 МГц. Однако по причинам совместимости почти все шины PCI и устройства на шине рассчитаны только на 33 МГц и 32 бита. AGP опирается на теоретический стандарт и работает на 66 МГц, но сохраняет ширину 32 бита. AGP имеет дополнительные режимы x2 и x4, которые позволяют порту выполнять передачи данных два или четыре раза в такте синхронизации, что увеличивает эффективную скорость шины до 133 или 266 МГц.

Интерфейс шин

В системе с несколькими шинами чипсет должен обеспечить схемы для объединения шин и взаимодействия устройства на одной шине с устройством на другой шине. Такие схемы называются мостом (bridge) (отметим, что мостом называется также сетевое устройство для соединения двух разнотипных сетей). Наиболее распространен мост PCI-ISA, который является компонентом системного чипсета для РС с процессорами Pentium. Шина PCI также имеет мост к системной шине.

Мастеринг шины

В шинах с большой пропускной способностью каждую секунду по каналу передается огромный объем информации. Обычно для управления этими передачами требуется процессор. Фактически процессор действует как "посредник" и, как это часто бывает в реальном мире, намного эффективнее убрать посредника и прямо выполнять передачи. Для этого разработаны устройства, которые могут управлять шиной и действовать самостоятельно, т.е. передавать данные непосредственно в системную память RAM; такие устройства называются ведущими шины (bus masters). Теоретически процессор одновременно с передачами данных по шине может выполнять и другую работу; на практике ситуация усложняется несколькими факторами. Для правильной реализации мастеринга шины (bus mastering) необходим арбитраж запросов шины, который обеспечивается чипсетом. Мастеринг шины называется также "first party" DMA, так как работой управляет устройство, выполняющее передачу.

Сейчас мастеринг шины реализован на шине PCI; добавлена также поддержка для жестких дисков IDE/ATA реализации мастеринга шины на PCI при определенных условиях.

Принцип локальной шины

Начало 90-х годов характеризуется переходом от текстовых приложений к графическим и ростом популярности операционной системы Windows. А это привело к огромному увеличению объема информации, который должен передаваться между процессором, памятью, видео и жесткими дисками. Стандартный экран монохроматического (черно-белого) текста содержит всего 4000 байтов информации (2000 для кодов символов и 2000 для экранных атрибутов), а стандартный 256-цветный экран Windows требует более 300 000 байтов! Более того, современная разрешающая способность 1600x1200 при 16 млн цветов требует 5.8 млн байтов информации на экран!

Переход программного мира с текста на графику означал также увеличение размеров программ и повышенные требования памяти. С точки зрения ввода-вывода для обработки дополнительных данных для видеокарты и жестких дисков огромной емкости требуется намного большая пропускная способность ввода-вывода. С этой ситуацией пришлось столкнуться при появлении процессора 80486, производительность которого была намного выше прежних процессоров. Шина ISA перестала удовлетворять возросшим требованиям и стала узким местом в деле повышения производительности РС. Повышение скорости процессора мало что дает, если он должен ожидать медленной системной шины для передачи данных.

Решение было найдено в разработке новой более быстрой шины, которая должна была дополнить шину ISA и применяться специально для таких быстродействующих устройств как видеокарты. Эта шина должна была размещаться на (или вблизи) намного более быстрой шины памяти и работать примерно с внешней скоростью процессора, чтобы передавать данные намного быстрее стандартной шины ISA. При размещении таких устройств вблизи ("локально") процессора появилась локальная шина . Первой локальной шиной была VESA Local Bus (VLB), а современной локальной шиной в большинстве РС является шина Peripheral Component Interconnect (PCI).

Системная шина

Системная шина (system bus) соединяет процессор с основной памятью RAM и, возможно, с L2-кэшем. Она является центральной шиной компьютера и остальные шины "ответвляются" от нее. Системная шина реализована как набор проводников на материнской плате и должна соответствовать конкретному типу процессора. Именно процессор определяет характеристики системной шины. Вместе с тем, чем быстрее системная шина, тем быстрее должны быть остальные электронные компоненты РС.

Старые ЦП Ширина шины Скорость шины
8088 8 битов 4.77 МГц
8086 16 битов 8 МГц
80286-12 16 битов 12 МГц
80386SX-16 16 битов 16 МГц
80386DX-25 32 бита 25 МГц

Рассмотрим системные шины РС с процессорами нескольких поколений. В процессорах первого, второго и третьего поколений частота системной шины определялась рабочей частотой процессора. По мере повышения скорости процессора увеличивалась и скорость системной шины. Одновременно увеличивалось и адресное пространство: в процессорах 8088/8086 оно составляло 1 МБ (20-битовый адрес), в процессоре 80286 адресное пространство увеличено до 16 МБ (24-битовый адрес), а начиная с процессора 80386 адресное пространство составляет 4 ГБ (32-битовый адрес).

Семейство 80486 Ширина шины Скорость шины
80486SX-25 32 бита 25 МГц
80486DX-33 32 бита 33 МГц
80486DX2-50 32 бита 25 МГц
80486DX-50 32 бита 50 МГц
80486DX2-66 32 бита 33 МГц
80486DX4-100 32 бита 40 МГц
5X86-133 32 бита 33 МГц

Как видно из таблицы для процессоров четвертого поколения, скорость системной шины вначале соответствовала рабочей частоте процессора. Однако технологические достижения позволяли повышать частоту процессора, а соответствие скорости системной шины требовало повышения быстродействия внешних компонентов, в основном, системной памяти, что было сопряжено со значительными трудностями и стоимостными ограничениями. Поэтому в процессоре 80486DX2-50 было впервые использовано удвоение частоты (clock doubling): процессор работал с внутренней частотой синхронизации 50 МГц, а внешняя скорость системной шины составляла 25 МГц, т.е. только половину рабочей частоты процессора. Этот прием значительно повышает производительность компьютера, особенно благодаря наличию внутреннего L1-кэша, который удовлетворяет большинство обращений процессора к системной памяти. С тех пор умножение частоты (clock multiplying) стало стандартным способом повышения производительности компьютера и применяется во всех современных процессорах, причем множитель частоты доведен до 8, 10 и более.

Семейство Pentium Ширина шины Скорость шины
Intel P60 64 бита 60 Мгц
Intel P100 64 бита 66 МГц
Cyrix 6X86 P133+ 64 бита 55 МГц
AMD K5-133 64 бита 66 МГц
Intel P150 64 бита 60 Мгц
Intel P166 64 бита 66 МГц
Cyrix 6X86 P166+ 64 бита 66 МГц
Pentium Pro 200 64 бита 66 МГц
Cyrix 6X86 P200+ 64 бита 75 МГц
Pentium II 64 бита 66 Мгц

Продолжительное время системные шины РС с процессорами пятого поколения работали со скоростью 60 МГц и 66 МГц. Значительным шагом вперед стало увеличение ширины данных до 64 битов и расширение адресного пространства до 64 ГБ (36-битовый адрес).

Скорость системной шины была повышена до 100 МГц в 1998 г. благодаря освоению производства микросхем PC100 SDRAM. Микросхемы памяти RDRAM позволяют еще более повысить скорость системной шины. Однако переход от 66 МГц к 100 МГц оказал значительное влияние на процессоры и материнские платы с Socket 7. В модулях Pentium II до 70-80% трафика (передач информации) осуществляется внутри нового картриджа SEC (Single Edge Cartridge), в котором находятся процессор и оба кэша L1-кэш и L2-кэш. Этот картридж работает со своей скоростью, независящей от скорости системной шины.

Процессор Чипсет Скорость
шины
Скорость ЦП
Intel Pentium II 82440BX
82440GX
100 МГц 350,400,450 МГц
AMD K6-2 Via MVP3,
ALi Aladdin V
100 МГц 250,300,400 МГц
Intel Pentium II Xeon 82450NX 100 МГц 450,500 МГц
Intel Pentium III i815
i820
133 МГц 600,667+ МГц
AMD Athlon VIA KT133 200 МГц 600 - 1000 МГц

Чипсеты i820 и i815, разработанные для процессора Pentium III, рассчитаны на системную шину 133 МГц. Наконец, в процессоре AMD Athlon введены значительные изменения в архитектуру и понятие системной шины оказалось ненужным. Этот процессор может работать с различными типами RAM на максимальной частоте 200 МГц.

Типы шин ввода-вывода

В этом разделе речь пойдет о различных шинах ввода-вывода, причем большая часть его посвящена современным шинам. Общее представление об использовании шин ввода-вывода дает следующий рисунок, наглядно показывающий назначение различных шин ввода-вывода современного РС.

В следующей таблице приведены суммарные сведения о различных шинах ввода-вывода, которые применяются в современных РС:

Шина Год Ширина Скорость Макс. пропускная
способность
PC и XT 1980-82 8 битов Синхронная: 4.77-6 МГц 4-6 МБ/с
ISA (AT) 1984 16 битов Синхронная: 8-10 МГц 8 МБ/с
MCA 1987 32 бита Асинхронная: 10.33 МГц 40 МБ/с
EISA (для серверов) 1988 32 бита Синхронная: макс. 8 МГц 32 МБ/с
VLB, для 486 1993 32 бита Синхронная: 33-50 МГц 100-160 МБ/с
PCI 1993 32/64 бита Асинхронная: 33 МГц 132 МБ/с
USB 1996 Последовательная 1.2 МБ/с
FireWire (IEEE1394) 1999 Последовательная 80 МБ/с
USB 2.0 2001 Последовательная 12-40 МБ/с

Старые шины

Новые современные шина PCI и порт AGP "родились" из старых шин, которые до сих пор можно встретить в РС. Более того, самая старая шина ISA до сих пор используется даже в новейших РС. Далее мы рассмотрим несколько подробнее старые шины РС.

Шина Industry Standard Architecture (ISA)

Это самая распространенная и действительно стандартная шина для РС, которая используется даже в новейших компьютерах несмотря на то, что практически не изменилась с момента своего расширения до 16 битов в 1984 г. Конечно, сейчас она дополнена более быстрыми шинами, но "выживает" благодаря наличию огромной базы периферийного оборудования, рассчитанного на этот стандарт. Кроме того, имеется много устройств, для которых скорости ISA более чем достаточно, например для модемов. По мнению некоторых экспертов до "умирания" шины ISA пройдет не менее 5-6 лет.

Выбор ширины и скорости шины ISA определился процессорами, с которыми она работала в первых РС. Оригинальная шина ISA в IBM PC имела ширину 8 битов, соответствуя 8 битам внешней шины данных процессора 8088, и работала на частоте 4.77 МГц, что также соответствует скорости процессора 8088. В 1984 г. появился компьютер IBM AT с процессором 80286 и ширина шины была удвоена до 16 битов, как у внешней шины данных процессора 80286. Одновременно была повышена до 8 МГц скорость шины, что также соответствовало скорости процессора. Теоретически пропускная способность шины составляет 8 МБ/с, но практически она не превышает 1-2 МБ/с.

В современных РС шина ISA действует как внутренняя шина , которая используется для клавиатуры, гибкого диска, последовательных и параллельных портов, и как внешняя шина расширения , к которой можно подключить 16-битовые адаптеры, например звуковую карту.

Впоследствии процессоры AT стали быстрее, а затем была увеличена и их шина данных, но теперь требование совместимости с существующими устройствами заставило производителей придерживаться стандарта и шина ISA с того времени практически не изменилась. Шина ISA обеспечивает достаточную пропускную способность для медленных устройств и наверняка гарантирует совместимость почти с каждым выпущенным РС.

Многие карты расширения, даже современные, до сих пор являются 8-битовыми (об этом можно узнать по разъему карты - 8-битовые карты используют только первую часть разъема ISA, а 16-битовые карты используют обе части). Для этих карт невысокая пропускная способность шины ISA не играет роли. Однако доступ к прерываниям от IRQ 9 до IRQ 15 обеспечивается через проводники в 16-битовой части разъемов шины. Именно поэтому большинство модемов нельзя подключить к IRQ с большими номерами. Линии IRQ между устройствами ISA нельзя разделять.

Документ The PC99 System Design Guide , подготовленный компаниями Intel и Microsoft, категорически требует удаления слотов шины ISA с материнских плат, поэтому можно ожидать, что дни этой "заслуженной" шины сочтены.

Шина MicroChannel Architecture (MCA)

Эта шина стала попыткой компании IBM сделать шину ISA "больше и лучше". При появлении в середине 80-х годов процессора 80386DX с 32-битовой шиной данных компания IBM решила разработать шину, соответствующую такой ширине шины данных. Шина MCA имела ширину 32 бита и имела несколько преимуществ по сравнению с шиной ISA.

Шина MCA имела несколько прекрасных возможностей с учетом того, что она появилась в 1987 г., т.е. за семь лет до появления шины PCI с аналогичными возможностями. В некоторых отношениях шина МСА просто опередила свое время:

  • Ширина 32 бита: Шина имела ширину 32 бита, как и локальные шины VESA и PCI. Ее пропускная способность была намного выше по сравнению с шиной ISA.
  • Мастеринг шины: Шина MCA эффективно поддерживала адаптеры с мастерингом шины, включая правильный арбитраж шины.
  • Шина MCA автоматически конфигурировала карты адаптеров, поэтому перемычки стали ненужными. Это произошло за 8 лет до того, как Windows 95 превратила технологию PnP в общепринятую для РС.

Шина MCA имела огромные потенциальные возможности. К сожалению, компания IBM приняла два таких решения, которые не способствовали распространению этой шины. Во-первых, шина МСА была несовместимой с шиной ISA, т.е. карты ISA вообще не работали в РС с шиной МСА, а компьютерный рынок очень чувствителен к проблеме обратной совместимости. Во-вторых, компания IBM решила сделать шину МСА своей собственностью, не продавая лицензию на ее применение.

Эти два фактора совместно с более высокой стоимостью систем с шиной МСА привели к забвению шины МСА. Поскольку компьютеры PS/2 больше не выпускаются, шина МСА "умерла" для рынка РС, хотя компания IBM до сих пор использует ее в своих серверах RISC 6000 UNIX. История с шиной МСА является одним из классических примеров того, как в мире компьютеров нетехнические вопросы часто доминируют над техническими.

Шина Extended Industry Standard Architecture (EISA)

Эта шина никогда не стала таким стандартом, каким является шина ISA, и не получила широкого распространения. Фактически она была ответом компании Compaq на шину МСА и привела к аналогичным результатам.

Компания Compaq при разработке шины EISA избежала двух важнейших ошибок компании IBM. Во-первых, шина EISA была совместимой с шиной ISA и, во-вторых, было разрешено использовать ее всем производителям РС. В общем, шина EISA имела значительные технические преимущества над шиной ISA, но рынок ее не воспринял. Основные особенности шины EISA:

  • Совместимость с шиной ISA: Карты ISA могли работать в слотах EISA.
  • Ширина шины 32 бита: Ширина шины увеличена до 32 битов.
  • Мастеринг шины: Шина EISA эффективно поддерживала адаптеры с мастерингом шины, включая правильный арбитраж шины.
  • Технология Plug and Play (PnP): Шина EISA автоматически конфигурировала карты адаптеров аналогично стандарту PnP современных систем.

Системы на базе EISA сейчас иногда встречаются в сетевых файловых серверах, а в настольных РС она не применяется из-за более высокой стоимости и отсутствию широкого выбора адаптеров. Наконец, пропускная способность ее значительно уступает локальным шинам VESA Local Bus и PCI. Практически шина сейчас EISA близка к "умиранию".

Шина VESA Local Bus (VLB)

Первая довольно популярная локальная шина VESA Local Bus (VL-Bus или VLB) появилась в 1992 г. Аббревиатура VESA означает Video Electronics Standards Association, а эта ассоциация была создана в конце 80-х годов для решения проблем видеосистем в РС. Основной причиной разработки шины VLB было улучшение производительности видеосистем РС.

Шина VLB представляет собой 32-битовую шину, которая является прямым расширением шины памяти процессора 486. Слот шины VLB - это 16-битовый слот ISA с добавленными в конце третьим и четвертым разъемами. Шина VLB обычно работает на частоте 33 МГц, хотя в некоторых системах возможна и большая скорость. Поскольку она является расширением шины ISA, карту ISA можно использовать в слоте VLB, но имеет смысл вначале занять обычные слоты ISA и оставить небольшое число слотов VLB для карт VLB, которые, конечно, не работают в слотах ISA. Применение видеокарты VLB и контроллера ввода-вывода значительно повышает производительность системы по сравнению с системой, имеющей только одну шину ISA.

Несмотря на то, что шина VLB была очень популярна в РС с процессором 486, появление в 1994 г. процессора Pentium и его локальной шины PCI привело к к постепенному "забвению" шины VLB. Одной из причин этого стали усилия фирмы Intel по продвижению шины PCI, но было и несколько технических проблем, связанных с реализацией VLB. Во-первых, конструкция шины очень сильно "привязана" к процессору 486, а переход к Pentium вызвал проблемы совместимости и другие проблемы. Во-вторых, сама шина имела технические недостатки: небольшое число карт на шине (часто две или даже одна), проблемы синхронизации при использовании нескольких карт и отсутствие поддержки мастеринга шины и технологии Plug and Play.

Сейчас шина VLB считается устаревшей и даже в последних материнских платах с процессором 486 используется шина PCI, а с процессорами Pentium - только PCI. Однако РС с шиной VLB недороги и их иногда можно еще встретить.

Шина Peripheral Component Interconnect (PCI)

Наиболее популярная сейчас шина ввода-вывода взаимодействия периферийных компонентов (Peripheral Component Interconnect - PCI) разработана фирмой Intel в 1993 г. Она ориентировалась на системы пятого и шестого поколений, но применялась и в последнем поколении материнских плат с процессором 486.

Как и шина VESA Local Bus, шина PCI имеет ширину 32 бита и обычно работает на частоте 33 МГц. Главное преимущество PCI над шиной VESA Local Bus кроется в чипсете, который управляет шиной. Шиной PCI управляют специальные схемы в чипсете, а шина VLB была, в основном, просто расширением шины процессора 486. Шина PCI в этом отношении не "привязана" к процессору 486 и ее чипсет обеспечивает правильные управление шиной и арбитраж шины, позволяя PCI делать намного больше, чем могла шина VLB. Шина PCI также применяется и вне платформы РС, обеспечивая универсальность и сокращая стоимость разработки систем.

В современных РС шина PCI действует как внутренняя шина , которая подключается к каналом EIDE на материнской плате, и как внешняя шина расширения , которая имеет 3-4 слота расширения для PCI-адаптеров.

Шина PCI соединяется с системной шиной через специальный "мост" (bridge) и работает на фиксированной частоте независимо от частоты синхронизации процессора. Она ограничена пятью слотами расширения, но каждый из них можно заменить двумя устройствами, встроенными в материнскую плату. Процессор может также поддерживать несколько микросхем мостов. Шина PCI более строго специфицирована по сравнению с шиной VL-Bus и предоставляет несколько дополнительных возможностей. В частности, она поддерживает карты, имеющие напряжение питания +3.3 В и 5 В, с помощью специальных ключей, которые не позволяют вставить карту в неподходящий слот. Далее функционирование шины PCI рассмотрено более подробно.

Производительность шины PCI

Шина PCI фактически имеет наибольшую производительность среди общих шин ввода-вывода в современных РС. Это объясняется несколькими факторами:

  • Пакетный режим (burst mode): Шина PCI может передавать информацию в пакетном режиме, когда после начальной адресации можно подряд передавать несколько наборов данных. Этот режим похож на пакетизацию кэша (cache bursting).
  • Мастеринг шины: Шина PCI поддерживает полный мастеринг, что способствует повышению производительности.
  • Опции высокой полосы пропускания: Версия 2.1 спецификации шины PCI допускает расширение до 64 битов и 66 МГц, что повышает текущую производительность в четыре раза. На практике 64-битовая шина PCI пока в РС не реализована (хотя уже применяется в некоторых серверах) и скорость сейчас ограничена 33 МГц, в основном, из-за проблем совместимости. Некоторое время придется ограничиваться 32 битами и 33 МГц. Однако благодаря AGP в несколько измененной форме будет реализована и более высокая производительность.

Скорость шины PCI в зависимости от чипсета и материнской платы можно установить как синхронную или асинхронную. При синхронной настройке (используемой в большинстве РС) шина PCI работает с половинной скоростью шины памяти; поскольку шина памяти обычно работает на 50, 60 или 66 МГц, шина PCI работает на частоте 25, 30 или 33 МГц. При асинхронной настройке скорость шины PCI можно задавать независимо от скорости шины памяти. Этим обычно управляют с помощью перемычек на материнской плате или параметрами BIOS. "Разгон" (overclocking) системной шины в РС, который использует синхронную шину PCI, вызовет "разгон" и периферийных устройств PCI, часто вызывая проблемы неустойчивой работы системы.

В первоначальной реализации шина PCI работала на частоте 33 МГц, а последующая спецификация PCI 2.1 определила частоту 66 МГц, что соответствует пропускной способности 266 МБ/с. Шину PCI можно конфигурировать на ширину данных 32 и 64 бита и допускается применять 32- и 64-битовые карты, а также разделять прерывания, что удобно в высокопроизводительных системах, в которых не хватает линий IRQ. С середины 1995 г. все скоростные устройства РС взаимодействуют друг с другом по шине PCI. Чаще всего она применяется для контроллеров жестких дисков и графических контроллеров, которые монтируются непосредственно на материнской плате или на картах расширения в слотах шины PCI.

Слоты расширения шины PCI

Шина PCI допускает больше слотов расширения, чем шина VLB, не вызывая технических проблем. Большинство систем с PCI поддерживают 3 или 4 слота PCI, а некоторые и значительно больше.

Примечание: В некоторых системах не все слоты обеспечивают мастеринг шины. Сейчас это встречается реже, но все же рекомендуется посмотреть руководство по материнской плате.

Шина PCI допускает большее разнообразие карт расширения по сравнению с шиной VLB. Чаще всего встречаются видеокарты, хост-адаптеры SCSI и скоростные сетевые карты. (Жесткие диски также работают на шине PCI, но они обычно подключаются непосредственно к материнской плате.) Однако отметим, что шина PCI не реализует некоторые функции, например последовательные и параллельные порты должны оставаться на шине ISA. К счастью, даже сейчас шина ISA остается более чем достаточной для этих устройств.

Внутренние прерывания шины PCI

Шина PCI использует свою внутреннюю систему прерываний для обработки запросов от карт на шине. Эти прерывания часто называются "#A", "#B", "#C" и "#D", чтобы избежать путаницы с обычно пронумерованными системными IRQ, хотя иногда они называются также от "#1" до "#4". Эти уровни прерываний обычно невидимы пользователю за исключением экрана настройки BIOS для PCI, где их можно использовать для управления работой карт PCI.

Эти прерывания, если они требуются картам в слотах, отображаются на обычные прерывания, чаще всего на IRQ9 - IRQ12. Слоты PCI в большинстве систем можно отобразить на большинство четыре обычных IRQs. В системах, имеющих больше четырех слотов PCI или имеющих четыре слота и контроллер USB (который использует PCI), два или больше устройств PCI разделяют IRQ.

Мастеринг шины PCI

Напомним, что мастеринг шины (bus mastering) представляет собой способность устройств на шине PCI (отличающихся, конечно, от системного чипсета) брать на себя управление шиной и непосредственно выполнять передачи. Шина PCI стала первой шиной шиной, которая привела к популярности мастеринга шины (наверное, потому что операционная система и программы смогли использовать его преимущества).

Шина PCI поддерживает полный мастеринг шины и обеспечивает средства арбитража шины через системный чипсет. Конструкция PCI допускает одновременный мастеринг шины нескольких устройств, а схема арбитража гарантирует, что ни одно устройство на шине (включая процессор!) не заблокирует никакое другое устройство. Однако разрешается одному устройству использовать полную пропускную способность шины, если другие устройства ничего не передают. Другими словами, шина PCI действует как крохотная локальная сеть внутри компьютера, в которой несколько устройств могут взаимодействовать друг с другом, разделяя коммуникационный канал, и которой управляет чипсет.

Технология Plug and Play для шины PCI

Шина PCI является частью стандарта Plug and Play (PnP), разработанного компаниями Intel, Microsoft и многими другими. Системы с шиной PCI первыми популяризировали применение PnP. Схемы чипсета PCI управляют идентификацией карт и совместно с операционной системой и BIOS автоматически производят распределение ресурсов для совместимых карт.

Шина PCI постоянно совершенствуется и разработками руководит Группа PCI Special Interest Group, в которую входят компании Intel, IBM, Apple и др. Результатом этих разработок стало повышение частоты шины до 66 МГц и расширение данных до 64 битов. Однако создаются и альтернативные варианты, например ускоренный графический порт (AGP) и скоростная последовательная шина FireWire (IEEE 1394). Фактически AGP представляет собой шину PCI 66 МГц (версия 2.1), в которую введены некоторые усовершенствования, ориентированные на графические системы.

Еще одной инициативой является шина PCI-X , называемая также "Project One" и "Future I/O". Компании IBM, Mylex, 3Com, Adaptec, Hewlett-Packard и Compaq хотят разработать специальную высокоскоростную серверную версию шины PCI. Эта шина будет иметь пропускную способность 1 ГБ/с (64 бита, 133 МГц). Компании Intel и Dell Computer не участвуют в этом проекте.

Компании Dell Computer, Hitachi, NEC, Siemens, Sun Microsystems и Intel в ответ на Project One выступили с инициативой разработки шины Next-Generation I/O (NGIO ), ориентированной на новую архитектуру ввода-вывода для серверов.

В августе 1999 г. семь лидирующих компаний (Compaq, Dell, Hewlett-Packard, IBM, Intel, Microsoft, Sun Microsystems) объявили о намерении объединить лучшие идеи шин Future I/O и Next Generation I/O. Новая открытая архитектура ввода-вывода для серверов должна обеспечить пропускную способность до 6 ГБ/с. Ожидается, что новый стандарт NGIO будет принят в конце 2001 г.

Ускоренный графический порт

Необходимость повышения полосы пропускания между процессором и видеосистемой вначале привела к разработке в РС локальной шины ввода-вывода, начиная с VESA Local Bus и кончая современной шиной PCI. Эта тенденция продолжается, причем требование повышенной полосы пропускания для видео уже не удовлетворяет даже шина PCI с ее стандартной пропускной способностью 132 МБ/с. Трехмерная графика (3D graphics) позволяет моделировать на экране виртуальные и реальные миры с мельчайшими деталями. Отображение текстур и скрывание объектов требуют огромных объемов данных и видеокарта должна иметь быстрый доступ к этим данным, чтобы поддержать высокую частоту регенерации.

Трафик на шине PCI становится очень напряженным в современных РС, когда видео, жесткие диски и другие периферийные устройства конкурируют между собой за единственную полосу пропускания ввода-вывода. Чтобы предотвратить насыщение шины PCI видеоинформацией, фирма Intel разработала новый интерфейс специально для видеосистемы, который называется ускоренный графический порт (Accelerated Graphics Port - AGP).

Порт AGP разработан в ответ на требование все большей производительности для видео. По мере использования программами и компьютерами таких областей, как трехмерная акселерация и воспроизведение видеофильмов (full-motion video playback), процессор и видео-чипсет должны обрабатывать все больше и больше информации. В таких приложения шина PCI достигла своего предела тем более, что ее используют еще и жесткие диски и другие периферийные устройства.

Кроме того, требуется все больше и больше видеопамяти. Для трехмерной графики нужно больше памяти и не только для экранного изображения, но и для производства вычислений. Традиционно эта проблема решается размещением все больше памяти на видеокарте, но при этом возникают две проблемы:

  • Стоимость: Видеопамять дороже обычной памяти RAM.
  • Ограниченная емкость: Емкость памяти на видеокарте ограничена: если разместить на карте 6 МБ и для буфера кадра требуется 4 МБ, то для обработки остается всего 2 МБ. Эту память расширить непросто и ее нельзя использовать для чего-то другого, если видеообработка не нужна.

AGP решает эти проблемы, разрешая видеопроцессору обращаться к основной системной памяти для производства вычислений. Этот прием намного эффективнее, так как эту память можно динамически разделять между системным процессором и видеопроцессором в зависимости от потребностей системы.

Идея реализации AGP довольно проста: создать быстрый специализированный интерфейс между видео-чипсетом и системным процессором. Интерфейс реализуется только между этими двумя устройствами, что обеспечивает три основных преимущества: проще реализовать порт, проще повысить скорость AGP и можно ввести в интерфейс специфические для видео усовершенствования. AGP-чипсет действует как посредник между процессором, L2-кэшем Pentium II, системной памятью, видеокартой и шиной PCI, реализуя так называемый счетверенный порт (Quad Port).

AGP считается портом, а не шиной, так как он объединяет только два устройства (процессор и видеокарту) и не допускает расширения. Одно из главных достоинств AGP состоит в том, что он изолирует видеосистему от остальных компонентов РС, исключая конкуренцию за полосу пропускания. Поскольку видеокарта удаляется с шины PCI, остальные устройства могут работать быстрее. Для AGP на материнской плате предусмотрен специальный сокет, который похож на сокет шины PCI, но размещается в другом месте платы. На следующем рисунке сверху видны два сокета шины ISA (черные), затем два сокета шины PCI (белые) и сокет ADP (коричневый).

AGP появился в конце 1997 г. и первой его поддержал чипсет 440LX Pentium II. Уже в следующем году появились AGP-чипсеты других компаний. Подробнее об AGP см. сайт http://developer.intel.com/technology/agp/ .

Интерфейс AGP

Интерфейс AGP во многих отношениях похож на шину PCI. Сам слот имеет такие же физические форму и размеры, но смещен от края материнской платы дальше, чем слоты PCI. Спецификация AGP фактически опирается на спецификацию PCI 2.1, которая допускает скорость 66 МГц, но эта скорость не реализована в РС. Материнские платы AGP имеют один слот расширения для видеокарты AGP и на один слот PCI меньше, а в остальном похожи на материнские платы PCI.

Ширина, скорость и полоса пропускания шины

Шина AGP имеет ширину 32 бита, как и шина PCI, но вместо работы с половинной скоростью шины памяти, как это делает PCI, она работает с полной скоростью. Например, на стандартной материнской плате Pentium II шина AGP работает на 66 МГц вместо 33 МГц шины PCI. Это сразу же удваивает полосу пропускания порта - вместо предела в 132 МБ/с для PCI порт AGP имеет в режиме наименьшей скорости полосу 264 МБ/с. Кроме того, он не разделяет полосу с другими устройствами шины PCI.

В дополнение к удвоению скорости шины в AGP определен режим 2X , в котором используются специальные сигналы, позволяющие передавать через порт вдвое больше данных при одной и той же частоте синхронизации. В этом режиме информация передается по нарастающему и спадающему фронтам сигнала синхронизации. Если шина PCI передает данные только по одному фронту, AGP передает данные по обоим фронтам. В результате производительность еще удваивается и теоретически доходит до 528 МБ/с. Планируется также реализовать режим 4X , в котором в каждом такте синхронизации осуществляются четыре передачи, что повысит производительность до 1056 МБ/с.

Конечно, все это впечатляет и для видеокарты ширина полосы в 1 ГБ/с очень хорошая, но возникает одна проблема: в современном РС имеется несколько шин. Напомним, что в процессорах класса Pentium ширина шины данных 64 бита и она работает на 66 МГц, что обеспечивает теоретическую пропускную способность 524 МБ/с, поэтому полоса в 1 ГБ/с не дает значительного выигрыша, если не повысить скорость шины данных сверх 66 МГц. В новых материнских платах скорость системной шины повышена до 100 МГц, что увеличивает пропускную способность до 800 МБ/с, но и этого недостаточно для того, чтобы оправдать передачи режима 4X .

Кроме того, процессор должен обращаться к системной памяти, а не только к видеосистеме. Если вся системная полоса 524 МБ/с занята видео через AGP, что же остается делать процессору? В этом случае переход к системной скорости 100 МГц даст определенный выигрыш.

Видео-конвейеризация порта AGP

Одно из достоинств AGP состоит в возможности конвейеризовать запросы данных. Конвейеризация впервые использовалась в современных процессорах как способ повышения производительности за счет перекрытия последовательных фрагментов задач. Благодаря AGP видео-чипсет может использовать аналогичный прием при запросе информации из памяти, что значительно повышает производительность.

Доступ AGP к системной памяти

Важнейшая особенность AGP заключается в возможности разделять основную системную память с видео-чипсетом. Это обеспечивает видеосистеме доступ к большей памяти для реализации трехмерной графики и другой обработки, не требуя размещения на видеокарте большой видеопамяти. Память на видеокарте разделяется между буфером кадра (frame buffer) и другими применениями. Поскольку для буфера кадра требуется быстродействующая и дорогая память, например VRAM, в большинстве карт вся память выполняется на VRAM, хотя этого и требуется для областей памяти кроме буфера кадра.

Отметим, что AGP не относится к унифицированной архитектуре памяти (Unified Memory Architecture - UMA). В этой архитектуре вся память видеокарты, включая и буфер кадра, берется из основной системной памяти. В AGP буфер кадра остается на видеокарте, где он и размещается. Буфер кадра является наиболее важным компонентом видеопамяти и требует наивысшей производительности, поэтому целесообразнее оставить его на видеокарте и использовать для него VRAM.

AGP разрешает видеопроцессору обращаться к системной памяти для решения других задач, требующих памяти, например текстурирования и других операций трехмерной графики. Эта память не столь критична, как буфер кадра, что позволяет удешевить видеокарты за счет уменьшения емкости памяти VRAM. Обращение к системной памяти называется прямым выполнением из памяти (DIrect Memory Execute - DIME). Специальное устройство, называемое таблицей переотображения графической апертуры (Graphics Aperture Remapping Table - GART), оперирует адресами RAM таким образом, что их можно распределить в системной памяти небольшими блоками, а не одной большой секции, и предоставляет их видеокарте как бы частью видеопамяти. Наглядное представление о функциях AGP дает следующий рисунок:


Требования AGP

Чтобы использовать в системе AGP, необходимо выполнить несколько требований:

  • Наличие видеокарты AGP: Это требование вполне очевидно.
  • Наличие материнской платы с чипсетом AGP: Разумеется, чипсет на материнской плате должен поддерживать AGP.
  • Поддержка операционной системы: Операционная система должна поддерживать новый интерфейс с помощью своих внутренних драйверов и процедур.
  • Поддержка драйверов: Конечно, видеокарте требуются специальные драйверы, чтобы поддерживать AGP и использовать его специальные возможности, например режим 3X .

Новые последовательные шины

Уже 20 лет многие периферийные устройства подключаются к тем же параллельным и последовательным портам, которые появились в первом РС, и за исключением стандарта Plug and Play "технология ввода-вывода" с 1081 г. мало изменилась. Однако к концу 90-х годов прошлого века пользователи все сильнее стали ощущать ограничения стандартных параллельных и последовательных портов:

  • Пропускная способность : Последовательные порты имеют максимальную пропускную способность 115.2 Кб/с, а параллельные порты (в зависимости от типа) около 500 Кб/с. Однако для таких устройств, как цифровые видеокамеры требуется значительно более высокая пропускная способность.
  • Простота использования : Подключать устройства к старым портам очень неудобно, особенно через переходные разъемы параллельных портов. Кроме того, все порты расположены сзади РС.
  • Аппаратные ресурсы : Для каждого порта требуется своя линия IRQ. РС имеет всего 16 линий IRQ, большинство из которых уже занято. Некоторые РС для подключения новых устройств имеют всего пять свободных линий IRQ.
  • Ограниченное число портов : Многие РС имеют два последовательных порта СОМ и один параллельный порт LPT. Допускается добавить больше портов но за счет использования ценных линий IRQ.

В последние годы технология ввода-вывода превратилась в одну из наиболее динамичных областей развития настольных РС и два разработанных стандарта последовательных передач данных сильно изменили способы подключения периферийных устройств и подняли концепцию Plug and Play на новую высоту. Благодаря новым стандартам любой пользователь сможет подключить к РС почти неограниченное множество устройств буквально за несколько секунд, не имея специальных технических знаний.

Универсальная последовательная шина

Разработанный компаниями Compaq, Digital, IBM, Intel, Microsoft, NEC и Northern Telecom стандарт универсальной последовательной шины (Universal Serial Bus - USB) предоставляет новый разъем для подключения всех распространенных устройств ввода-вывода, устраняя множество современных портов и разъемов.

Шина USB допускает подключение до 127 устройств с помощью шлейфного соединения (daisy-chaining) или использования USB-хаба (USB hub). Сам хаб, или концентратор , имеет несколько сокетов и вставляется в РС или другое устройство. К каждому USB-хабу можно подключить семь периферийных устройств. Среди них может быть и второй хаб, к которому можно подключить еще семь периферийных устройств, и т.д. Вместе с сигналами данных шина USB передает и напряжение питания +5 В, поэтому небольшие устройства, например ручные сканеры, могут не иметь собственного блока питания.

Устройства подключаются непосредственно в 4-контактный сокет (розетку) на РС или хабе в виде прямоугольного сокета Типа А. Все кабели, которые постоянно подключены к устройству, имеют вилку Типа А. Устройства, которые используют отдельный кабель, имеют квадратный сокет Типа В, а кабель, который подключает их, имеет вилку Типа А или Типа В.

Шина USB снимает ограничения скорости последовательных портов на базе UART. Она работает со скоростью 12 Мб/с, что соответствует сетевым технологиям Ethernet и Token Ring и обеспечивает достаточную пропускную способность для всех современных периферийных устройств. Например, пропускной способности шины USB достаточно для поддержки таких устройств, как внешние накопители CD-ROM и ленточные накопители, а также интерфейсов ISDN обычных телефонов. Ее также достаточно для передачи сигналов цифрового звука непосредственно в динамики, оснащенные цифро-аналоговыми преобразователя, что устраняет необходимость иметь звуковую карту. Однако шина USB не предназначена заменить сети. Чтобы получить приемлемо низкую стоимость, расстояние между устройствами ограничено 5 м. Для медленных устройств типа клавиатуры и мыши можно установить скорость передачи данных 1.5 Мб/с, экономя пропускную способность для более быстрых устройств.

Шина USB полностью поддерживает технологию Plug and Play. Она устраняет необходимость установки карт расширения внутри РС и последующего реконфигурирования системы. Шина позволяет подключать, конфигурировать, использовать и при необходимости отключать периферийные устройства в то время, когда РС и другие устройства работают. Не нужно инсталлировать драйверы, выбирать последовательные и параллельные порты, а также определять линии IRQ, DMA-каналы и адреса ввода-вывода. Все это достигается путем управления периферийными устройствами с помощью хост-контроллера на материнской плате или на карте PCI. Хост-контроллер и подчиненные контроллеры в хабах управляют периферийными устройствами, снижая нагрузку на процессор и повышая общую производительность системы. Самим хост-контроллером управляет системное программное обеспечение в составе операционной системы.

Данные передаются по двунаправленному каналу, которым управляют хост-контроллер и подчиненные контроллеры хабов. Улучшенный мастеринг шины позволяет постоянно зарезервировать для конкретных периферийных устройств части общей пропускной способности; такой способ называется изохронной передачей данных (isochronous data transfer). Интерфейс шины USB содержит два основных модуля: машину последовательного интерфейса (Serial Interface Engine - SIE), отвечающую за протокол шины, и корневой хаб (Root Hub), используемый для расширения числа портов шины USB.

Шина USB выделяет каждому порту 500 мА. Благодаря этому маломощные устройства, которые обычно требуют отдельный преобразователь переменного тока (AC adapter), можно питать через кабель - USB позволяет РС автоматически определять требуемую мощность и доставлять ее в устройство. Хабы допускают полное питание от шины USB (bus powered), но могут иметь свой преобразователь переменного тока. Хабы с собственным питанием, предоставляющие 500 мА на порт, обеспечивают максимальную гибкость для будущих устройств. Хабы с переключением портов изолируют все порты друг от друга, поэтому одно "закороченное" не нарушает работу других.

Шина USB обещает создание РС с единственным портом USB вместо современных четырех или пяти различных разъемов. К нему можно подключить одно большое мощное устройство, например монитор или принтер, которое будет действовать как хаб, обеспечивая подключение других меньших устройств, например мыши, клавиатуры, модема, сканера, цифровой камеры и т.д. Однако для этого потребуется разработка специальных драйверов устройств. Однако у такой конфигурации РС имеются недостатки. Некоторые специалисты считают, что архитектура USB довольно сложная, а необходимость поддержки многих разнотипных периферийных устройств требует разработки целого набора протоколов. Другие полагают, что принцип хаба просто смещает стоимость и сложность с системного блока в клавиатуру или монитор. Но главным препятствием успеху USB является стандарт IEEE 1394 FireWire.

Шина IEEE 1394 FireWire

Этот стандарт быстродействующей периферийной шины разработан компаниями Apple Computer, Texas Instruments и Sony. Он разрабатывался как дополнение шины USB, а не как альтернатива ей, поскольку в одной системе могут использоваться обе шины, аналогично современным параллельным и последовательным портам. Однако крупные производители цифровых камер и принтеров заинтересованы в шине IEEE 1394 больше, чем в шине USB, потому что для цифровых камер лучше подходит сокет 1394, а не порт USB.

Шина IEEE 1394 (обычно называемая FireWire - "Огненный провод") во многом похожа на шину USB, также являясь последовательной шиной с горячей заменой, но намного быстрее. В IEEE 1394 есть два уровня интерфейса: один для шины на материнской плате компьютера и второй для интерфейса типа "точка-точка" между периферийным устройством и компьютером по последовательному кабелю. Простой мост объединяет эти два уровня. Интерфейс шины поддерживает скорости передачи данных в 12.5, 25 или 50 МБ/с, а интерфейс кабеля - 100, 200 и 400 Мб/с, что намного больше скорости шины USB - 1.5 МБ/с или 12 Мб/с. Спецификация 1394b определяет другие способы кодирования и передачи данных, что позволяет повысить скорость до 800 Мб/с, 1.6 Гб/с и более. Такая высокая скорость позволяет применять IEEE 1394 для подключения к РС цифровых камер, принтеров, телевизоров, сетевых карт и внешних запоминающих устройств.

Разъемы кабеля IEEE 1394 сделаны так, что электрические контакты находятся внутри корпуса разъема, что предотвращает возможности электрического удара пользователя и загрязнения контактов руками пользователя. Эти небольшие и удобные разъемы аналогичны игровому разъему Nintendo GameBoy, который показал отличную долговечность. Кроме того, эти разъемы можно вставлять вслепую сзади РС. Не требуется никаких оконечных устройств (терминаторов - terminators) и ручной установки идентификаторов.

Шина IEEE 1394 рассчитана на 6-проводный кабель длиной до 4.5 м, который содержит две пары проводников для передачи данных и одну пару для питания устройства. Каждая сигнальная пара экранирована и весь кабель также экранирован. Кабель допускает напряжение от 8 В до 400 В и ток до 1.5 А и сохраняет физическую непрерывность устройства, когда устройство выключено или неисправно (что очень важно для последовательной топологии). Кабель обеспечивает питание для подключенных к шине устройств. По мере совершенствования стандарта ожидается, что шина обеспечит большие расстояния без повторителей и еще большую пропускную способность.

Основой любого соединения IEEE 1394 служит микросхема физического уровня и коммуникационного уровня, причем для устройства необходимы две микросхемы. Физический интерфейс (PHY) одного устройства соединяется с PHY другого устройства. Он содержит схемы, необходимые для выполнения функций арбитража и инициализации. Коммуникационный интерфейс соединяет PHY, а также внутренние схемы устройства. Он передает и принимает пакеты в формате IEEE 1394 и поддерживает асинхронные или изохронные передачи данных. Возможность поддержки асинхронных и изохронных форматов в одном и том же интерфейсе допускает работу на шине некритичных ко времени приложений, например сканеров или принтеров, а также приложений реального времени, например видео и звук. Все микросхемы физического уровня используют одну и ту же технологию, а микросхемы коммуникационного уровня специфичны для каждого устройства. Такой подход позволяет шине IEEE 1394 действовать как система "узел-узел" (peer-peer) в отличие от подхода клиент-сервер в шине USB. В результате системе IEEE 1394 не требуется ни обслуживающий хост, ни РС.

Асинхронная передача является традиционным способом передач данных между компьютерами и периферийными устройствами. Здесь данные передаются в одном направлении и сопровождаются последующим подтверждением источнику. В асинхронной передаче данных упор сделан на доставку, а не на производительность. Передача данных гарантирована и поддерживаются повторные передачи (retries). Изохронная передача данных обеспечивает поток данных с предопределенной скоростью, поэтому приложение может обрабатывать их с учетом временных соотношений. Это особенно важно для критичных во времени мультимедийных данных, когда доставка точно во времени (just-in-time delivery) устраняет необходимость в дорогом буферировании. Изохронные передачи данных работают по принципу широкого вещания (broadcast), когда одно или несколько устройств могут "прослушивать" (listen) передаваемые данные. По шине IEEE 1394 можно одновременно передавать несколько каналов (до 63) изохронных данных. Так как изохронные передачи могут занимать максимум 80% пропускной способности шины, остается достаточная полоса пропускания и для дополнительных асинхронных передач.

Масштабируемая архитектура шины IEEE 1394 и гибкая топология делают ее идеальной для подключения высокоскоростных устройств: от компьютеров и жестких дисков до цифрового аудио- и видеооборудования. Устройства можно подключать в виде шлейфной или древовидной топологии. Рисунок слева показывает две отдельные рабочие области, соединенные мостом шины IEEE 1394. Рабочая область #1 состоит из видеокамеры, РС и видеомагнитофона, которые все соединены через IEEE 1394. РС также подключен к физически удаленному принтеру через повторитель 1394, который увеличивает расстояние между устройствами, усиливая сигналы шины. На шине IEEE 1394 допускается до 16 "скачков" (hops) между любыми двумя устройствами. Размножитель (splitter) 1394 используется между мостом и принтером, чтобы предоставить еще один порт для подключения моста шины IEEE 1394. Размножители обеспечивают для пользователей большую гибкость топологии.

Рабочая область #2 содержит на сегменте шины 1394 только РС и принтер, а также соединение с мостом шины. Мост изолирует трафик данных внутри каждой рабочей области. Мосты шины IEEE 1394 допускают передавать выбранные данные из одного сегмента шины в другой. Поэтому PC #2 может запросить изображения от видеомагнитофона в рабочей области #1. Так как кабель шины передает и питание сигнальный интерфейс PHY всегда с питанием и данные передаются даже в том в том случае, если PC #1 выключен.

Каждый сегмент шины IEEE 1394 допускает подключение до 63 устройств. Сейчас каждое устройство может находиться на расстоянии до 4.5 м; большие расстояния возможны как с повторителями, так и без них. Усовершенствования кабелей позволят разносить устройства на большие расстояния. С помощью мостов можно объединять более 1000 сегментов, что обеспечивает значительный потенциал для расширения. Еще одно достоинство состоит в возможности выполнять транзакции с разными скоростями по одному носителю для устройства. Например, некоторые устройства могут работать со скоростью 100 Мб/с, а другие - со скоростями 200 Мб/с и 400 Мб/с. Разрешается горячая замена (подключение или отключение устройств) на шине даже тогда, когда шина полностью работает. Автоматически распознаются изменения в топологии шины. Благодаря этому становятся ненужными коммутаторы адресов и другие вмешательства пользователя для реконфигурирования шины.

Благодаря технологии передачи пакетов шину IEEE 1394 можно организовать так, как если бы между устройствами распределено пространство памяти, или как будто устройства находятся в слотах на материнской плате. Адрес устройства состоит из 64 битов, причем 10 битов отводятся для идентификатора сети, 6 битов для идентификатора узла и 48 битов для адресов памяти. В результате можно адресовать 1023 сети из 63 узлов, причем каждый имеет память 281 ТБ. Адресация памяти, а не каналов, считает ресурсы регистрами или памятью, к которым можно обратиться с помощью транзакций процессор-память. Все это обеспечивает простую сетевую организацию; например, цифровая камера может легко передать изображения прямо в цифровой принтер без компьютера-посредника. Шина IEEE 1394 показывает, что РС теряет свою доминирующую роль по объединению среды и его можно считать очень интеллектуальным узлом.

Необходимость использования двух микросхем вместо одной делает периферийные устройства для шины IEEE 1394 более дорогими по сравнению с устройствами для SCSI, IDE или USB, поэтому она не годится для медленных устройств. Однако ее достоинства для высокоскоростных приложений, например цифрового видеоредактирования, превращает шину IEEE 1394 в основной интерфейс для бытовой электроники.

Несмотря на достоинства шины IEEE 1394 и появление в 2000 г. материнских плат со встроенными контроллерами этой шины, будущий успех FireWire не гарантирован. Появление спецификации USB 2.0 значительно усложнило ситуацию.

Спецификация USB 2.0

В разработке этой спецификации, ориентированной на поддержку высокоскоростных периферийных устройств, принимали участие компании Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC и Philips. В феврале 1999 г. было объявлено о повышении существующей производительности в 10 - 20 раз, а в сентябре 1999 г. по результатам инженерных исследований оценки были повышены до 30 - 40 раз по сравнению с USB 1.1. Высказывались опасения, что при такой производительности шина USB навсегда "похоронит" шину IEEE 1394. Однако по общему мнению эти две шины ориентируются на различные применения. Цель USB 2.0 состоит в том, чтобы обеспечить поддержку всех современных и будущих популярных периферийных устройств РС, а шина IEEE 1394 ориентирована на подключение бытовых аудио- и видео-устройств, например цифровых видеомагнитофонов, DVD и цифровых телевизоров.

Согласно USB 2.0 пропускная способность повышается с 12 Мб/с до 360-480 Мб/с. Ожидается, что шина USB 2.0 будет совместима с USB 1.1, что обеспечит пользователям безболезненный переход к новой шине. Для нее будут разработаны новые скоростные периферийные устройства, которые расширят диапазон применений РС. Скорости 12 Мб/с вполне достаточно для таких устройств, как телефоны, цифровые камеры, клавиатура, мышь, цифровые джойстики, ленточные накопители, накопители на гибком диске, цифровые динамики, сканеры и принтеры. Повышенная пропускная способность USB 2.0 расширит функциональность периферийных устройств, обеспечивая поддержку камер с высокой разрешающей способностью для видеоконференций, а также скоростных сканеров и принтеров следующего поколения.

Существующие периферийные устройства для USB будут без изменений работать в системе с шиной USB 2.0. Таким устройствам, как клавиатура и мышь, не требуется повышенная пропускная способность USB 2.0 и они будут работать как устройства USB 1.1. Повышенная пропускная способность USB 2.0 расширит диапазон периферийных устройств, которые можно будет подключать к РС, а также позволит большему числу USB-устройств разделять имеющуюся пропускную способность шины вплоть до архитектурных пределов шины USB. Обратная совместимость USB 2.0 с USB 1.1 может стать решающим преимуществом в борьбе с шиной IEEE 1394 за интерфейс потребительских приборов.

Стандарт DeviceBay

DeviceBay представляет собой новый стандарт, который разработан вслед за стандартами шин IEEE 1394 и USB. Эти шины допускают подключение и отключение устройств "на лету", т.е. в процессе работы РС. Такая возможность горячей замены (hot swap, hot plug) потребовала нового специального соединения между устройствами и ответом на это требование стал стандарт DeviceBay. Он стандартизует отсеки, в которые можно вставлять жесткие диски, накопители CD-ROM и другие устройства. Монтажная рама устанавливается без инструментов и в процессе работы РС. Если стандарт DeviceBay получит широкое распространение, он покончит с плоскими кабелями внутри корпуса РС. Весь РС можно оформить в виде модульной конструкции, в которой все модули подключаются к шинам USB или FireWire как устройства DeviceBay. При этом устройство можно будет свободно перемещать между РС и другими домашними приборами.

Стандарт DeviceBay рассчитан на подключение таких устройств, как накопители Zip, накопители CD-ROM, ленточные накопители, модемы, жесткие диски, считыватели PC-карт и др.

Компьютерная шина

История

Первое поколение

Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала. Увеличение скорости процессора было не простым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность шины может значительно страдать.

Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.

Второе поколение

Компьютерные шины «второго поколения», например NuBus решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller ). Такая архитектура позволила ускорять скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных , с 8-ми битных шин первого поколения до 16 или 32-х битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play .

Однако новые шины, так же как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине и их скорость росла быстрее, чем скорость переферийной шины. В результате, шины были слишком медленны для новых систем и машины страдали от нехватки данных. Один из примеров данной проблемы: видеокарты быстро совершенствовались, и им не хватало пропускной способности даже новых шин (PCI). Компьютеры стали включать в себя (AGP) только для работы с видеоадаптерами. В году AGP снова стало недостаточно быстрым для мощных видеокарт и AGP стал замещаться новой шиной PCI Express

Увеличивающееся число внешних устройств стало применять собственные шины. Когда были изобретены приводы дисков, они присоединялись к машине при помощи карты, подключаемой к шине. Из-за этого компьютеры имели много слотов расширения. Но в 1980‑х и 1990‑х были изобретены новые шины IDE решившие эту проблему и оставив большую часть разъёмов расширения в новых системах пустыми. В наше время типичная машина поддерживает около пяти различных шин.

Шины стали разделять на внутренние (local bus ) и внешние (external bus ). Первые разработаны для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров . IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.

Третье поколение

Шины «третьего поколения» в настоящее время [когда? ] находятся в процессе выхода на рынок, включая

Современные интегральные схемы часто разрабатываются из заранее созданных частей, так называемых «intellectual property» или IP. Разработаны шины (например Wishbone) для более простой интеграции различных частей интегральных схем.

Примеры внутренних компьютерных шин

Параллельные

Смотреть что такое "Компьютерная шина" в других словарях:

    Компьютерная шина, по которой передаются сиг­налы, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию (считывание или запись информации из памяти) нужно производить, синхронизируют обмен… … Википедия

    Шина адреса компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для… … Википедия

    Шина расширения компьютерная шина, которая используется на системной карте компьютеров или промышленных контроллеров, для добавления устройств (плат) в компьютер. Есть несколько видов: Персональные компьютеры ISA 8 и 16 разрядная,… … Википедия

    Компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство желает обратиться для проведения операции… … Википедия

    Шина адреса компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство желает обратиться для проведения… … Википедия

    Шина (нем. Schiene): Содержание 1 Этноним 2 В науке и технике 3 В искусстве … Википедия

    На фотографии 4 слота PCI Express: x4, x16, x1, опять x16, внизу стандартный 32 разрядный слот PCI, на материнской плате DFI LanParty nForce4 SLI DR PCI Express или PCIe или PCI E, (также известная как 3GIO for 3rd Generation I/O; не путать с PCI … Википедия

    ШИНА компьютерная, магистраль передачи данных между оперативной памятью и контроллерами. Системную шину можно упрощенно представить как совокупность сигнальных линий, объединенных по их назначению (данные, адреса, управление), которые имеют… … Энциклопедический словарь

    Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16). Ниже обычный 32 битный разъем шины PCI. У этого термина существуют и другие значения, см. Шина. Компьютерная шина (от … Википедия

    Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16), по сравнению с обычным 32 битным разъемом шины Компьютерная шина (от англ. computer bus, bidirectional universal switch двунаправленный универсальный коммутатор) в архитектуре компьютера… … Википедия

«А что такое шины»? Странный вопрос, может сказать любой человек. Шины мы видим с самого детства - велосипедные, легковые, грузовые шины - т.е. то, что «одевается» на колеса. Но оказывается, и не все знают о том что существуют компьютерные шины. Компьютером сейчас никого не удивишь, он почти «настольный» предмет любого школьника. Но вот что там внутри - это знают немногие увлеченные, школьники-любители, да работники сервисных центров.


Итак, в Викпедии написано, что «компьютерная ши́на (от англ. computer bus, bidirectional universal switch — двунаправленный универсальный коммутатор) — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера». Т.о. можно сказать, что если сердцем ПК является процессор, то шины ПК - это те артерии, по которым бегут электрические сигналы. И те разъемы, куда обычно вставляются жесткие диски, видео карточки, сетевые карты - это не шины, это лишь слоты-интерфейсы, и именно с их помощью! и происходит подключение к шинам. Т.е. другими словами, с помощью шин компьютерные устройства обмениваются информацией. За работой шин следят специальные контроллеры.

Шины бывают двух типов: системная шина и шина расширения. Системная шина (или шина процессора) необходима для обмена информацией между процессором и оперативной и внешней памятью. Вторая шина служит для подключения периферийных устройств и является как бы продолжением шины процессора, связывая ее с внешними устройствами. Помимо контроллера каждая шина включает в себя компоненты адреса, данных, управления.

Если грузовые шины имеют свои характеристики (размеры, тип рисунка, конструкцию по расположению нитей корда, тип герметизации), то и компьютерные шины имеют свои характеристики. Каковы же они?

Основными характеристиками компьютерных шин можно считать

  • Разрядность, определяющая количество бит данных, которые могут быть одновременно переданы. Т.е. если шина 16 разрядная, то она имеет 16 каналов для одновременной передачи данных.
  • Тактовую частоту.
  • Максимальную скорость передачи данных в секунду.

Компьютерные шины постоянно совершенствуются. Если в 80-х годах прошлого столетия популярной была системная шина IBM PC/XT, обеспечивавшая передачу 8 бит данных, то с появлением процессора i286 появилась и новая системная шина ISA (Industry Standard Architecture). Но шло время, появились процессоры i386, i486 и Pentium и системная шина ISA постепенно становится «узким» местом персональных компьютеров на основе этих процессоров.

В настоящее время спектр шин достаточно широк и их количество и качество постоянно растет. Каждая шина имеет свои определенные преимущества, а, возможно, и недостатки. Часто в современных компьютерах применяются свои «фирменные» шины.


Комментарии:

Компания Dell официально представила новое поколение ноутбуков линейки Inspiron 5000 на процессорах AMD R...

Состоялся официальный анонс нового смартфона Lenovo K6 Enjoy, который компания относит к среднему классу....

Длительное время камера Panasonic Lumix GH-5 пользовалась невероятным спросом на рынке, так как она позво...

Сегодня компания TECNO официально выпустила доступный смартфон CAMON 11S. Его главное преимущество заключ...



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows