Схема светодиодной лампочки на 220 вольт. Устройство светодиодной лампы. Разбираем лампу EKF серии FLL-A. Конструкция светодиодных ламп

Схема светодиодной лампочки на 220 вольт. Устройство светодиодной лампы. Разбираем лампу EKF серии FLL-A. Конструкция светодиодных ламп

Генетик – это научный работник, который изучает строение и изменения генетического материала человека и других живых существ. Врач-генетик – это специалист с высшим медицинским образованием, который изучает наследственность человека и связанные с нею генетические заболевания .

Врачи-генетики работают в научных центрах и диагностических лабораториях. Эти специалисты могут пройти курсы усовершенствования и работать в сфере генной инженерии для создания лекарственных препаратов.

Чем занимается генетик?

Врач-генетик занимается вопросами медицинской генетики. В сферу его деятельности входит изучение болезней, которые имеют наследственную предрасположенность, а также условий, при которых эта предрасположенность проявляется.

Врач-генетик не является врачом в полном смысле этого слова, то есть к нему обращаются, в основном, для диагностики наследственных болезней или выявления риска развития генетических заболеваний еще на этапе планирования беременности .

Наследственные болезни характеризуются следующими особенностями:

  • приводят к сокращению продолжительности жизни (иногда значительному );
  • не излечиваются полностью (во многих случаях возможно только смягчение симптомов );
  • часто становятся причиной умственной отсталости.
Необходимо помнить, что врожденные пороки и наследственные болезни не являются синонимами. Наследственное заболевание может проявиться сразу после рождения или спустя годы и даже десятилетия. Причинами врожденных аномалий развития могут быть не только генетические болезни, но и внутриутробная инфекция и другие тератогенные (воздействующие на плод ) факторы.

В генетике имеются следующие важные понятия:

  • наследственность – способность живых организмов сохранять и передавать потомкам признаки, характерные для своего вида (рода );
  • ДНК (дезоксирибонуклеиновая кислота ) – длинная молекула, в которой зашифрованы коды для образования всех компонентов организма;
  • ген – участок ДНК , который отвечает за конкретный признак организма;
  • хромосома – входит в состав ядра клетки и содержит ДНК, то есть является носителем информации о признаках и свойствах организма;
  • половые хромосомы – X-хромосома (женская ) и Y-хромосома (мужская ), их сочетание определяет пол человека (XX – женский, XY – мужской );
  • геном – весь генетический материал человека;
  • кариотип – это хромосомный набор человека (форма и количество хромосом );
  • аутосомное наследование – ген-мутант находится в какой-либо неполовой (соматической ) хромосоме;
  • наследование, сцепленное с X хромосомой – ген-мутант находится в X-хромосоме (наследование, сцепленное с полом );
  • доминантный ген – ген, который оказывает сильное влияние на признак;
  • рецессивный ген – ген, влияние которого на признак слабое.
Все наследственные болезни условно делятся на следующие группы:
  • генные болезни;
  • хромосомные болезни;
  • мультифакториальные );
  • наследственные митохондриальные болезни;
  • болезни, возникающие из-за генетической несовместимости матери и плода.

Генные болезни (наследственные болезни )

Генные болезни обусловлены мутациями в одном гене или его отсутствием (моногенные болезни ). Эти заболевания называются также менделевскими, так как они передаются по законам наследования признаков Менделя. Именно эти болезни обычно называют наследственными, имея в виду, что они наследуются от родителей.

Существуют следующие типы наследования генных болезней:

  • аутосомно-доминантный тип наследования – при наличии болезни у одного из родителей «неправильный» ген передается ребенку в 50% случаев;
  • аутосомно-рецессивный – если оба родителя здоровы, но «несут» мутировавший ген в своей ДНК, то ребенок наследует его в 25% случаев;
  • доминантное наследование, сцепленное с X-хромосомой – мутантный ген связан с половой хромосомой X и может передаваться от обоих родителей, при этом больной мужчина передает «неправильный» ген всем своим дочерям, но не передает его сыновьям, а больная женщина передает ген половине своих детей, независимо от их пола;
  • рецессивное наследование, сцепленное с X-хромосомой – болезни передаются по материнской линии, но болеют только мальчики, так как у девочек есть «запасная» X-хромосома со здоровым геном.
Вся суть генного заболевания состоит в том, что при мутации гена нарушается образование какого-либо белка, ответственного за один из процессов, происходящих в организме. Например, если этот белок является ферментом (обеспечивает биохимические реакции обмена веществ ) или контролирует метаболизм, то развиваются наследственные болезни обмена веществ. Если же нарушено образование белка , участвующего в свертывании крови или создании эритроцитов , развиваются болезни крови .

Наиболее часто встречающиеся генные болезни

Заболевание Тип наследования Механизм развития Проявления
Наследственны болезни обмена веществ
Фенилкетонурия аутосомно-рецессивный Из-за отсутствия или дефицита фермента, который обеспечивает превращение аминокислоты фенилаланина в тирозин, в организме накапливаются токсичные продукты, поражающие головной мозг.
  • умственная отсталость ребенка;
  • очень неприятный запах мочи («мышиный» или «волчий» ).
Альбинизм аутосомно-рецессивный (возможен аутосомно-доминантный ) Врожденное отсутствие или дефицит фермента тирозиназы, необходимого для образования пигмента меланина, который окрашивает волосы, кожу и радужную оболочку глаз в темные оттенки.
  • светлые волосы;
  • белая кожа;
  • серо-голубые глаза (иногда с розовым или красным оттенком ).
Галактоземия аутосомно-рецессивный Недостаточность фермента (ГАЛТ ), превращающего галактозу в глюкозу приводит к накоплению в организме галактозы и ее побочных продуктов, которые оказывают повреждающее действие на многие органы.
  • понос и рвота с первых дней жизни;
  • желтушность кожи (печеночная недостаточность );
  • катаракта (помутнение хрусталика );
  • задержка психического и физического развития.
Лактазная недостаточность аутосомно-рецессивный Дефицит или отсутствие фермента лактазы , благодаря которому организм усваивает молочный сахар (лактозу ) и превращает его в глюкозу и галактозу.
  • понос, боль и вздутие живота , которые связаны с приемом молока;
  • задержка в росте и отсутствие прибавки в весе (у грудных детей ).
Муковисцидоз аутосомно-рецессивный Мутация гена, ответственного за перенос ионов хлора через клеточную стенку приводит к тому, что нарушается состав слизи, которую вырабатывают железистые клетки, и она становится слишком вязкой. Вязкая слизь закрывает протоки желез, и образуются кисты.
  • цирроз печени;
Болезнь Гоше аутосомно-рецессивный Мутация в гене фермента глюкоцереброзидазы ведет к нарушению обработки глюкоцереброзидов (липидов ), в результате чего они накапливается в лейкоцитах (макрофагах ), костном мозге, печени и селезенке .
  • уменьшение количества эритроцитов, тромбоцитов и лейкоцитов;
  • увеличение печени и селезенки (увеличение живота );
  • усталость и слабость ;
  • частые кровоизлияния;
  • неврологические симптомы (косоглазие , параличи, судороги ).
Гемохроматоз аутосомно-рецессивный Вследствие мутации гена, который ответственен за развитие гемохроматоза (белок HFE ) блокирует гепсидин, контролирующий всасывание железа в кишечнике . При отсутствии тормозящего влияния гепсидина железо продолжает всасываться и накапливается в тканях.
  • болезнь проявляется поздно (в 40 – 60 лет );
  • развиваются симптомы недостаточности печени, сердца , почек;
  • возникает боль в суставах ;
  • нарушается функция половых органов.
Болезнь Вильсона аутосомно-рецессивный Болезнь возникает из-за дефекта в гене, который регулирует обмен меди в организме. В результате медь накапливается в тканях и оказывает токсичное действие.
  • параличи, повышенный мышечный тонус;
  • нарушение поведения, речи.
Синдром Жильбера аутосомно-доминантный Генная мутация вызывает дефицит фермента, который связывает токсичный билирубин и превращает его в связанный билирубин желчи.
  • желтушность кожи и склер;
  • тошнота , рвота;
  • запоры , поносы;
  • вздутие живота.
Адреногенитальный синдром аутосомно-рецессивный Отсутствие фермента, который участвует в синтезе кортизола (гормона надпочечников ), приводит к компенсаторному увеличению размеров ткани надпочечников (гиперплазии ) и повышенной выработке остальных надпочечниковых гормонов.
  • вирилизация (появление мужских половых признаков у девочек );
  • гирсутизм (излишнее оволосение у женщин );
  • отсутствие менструации , бесплодие ;
  • рвота, диарея ;
  • судороги.
Врожденный гипотиреоз аутосомно-рецессивный Мутации в генах, которые регулируют ферменты, участвующие в образовании гормонов щитовидной железы (10% всех форм врожденного гипотиреоза ).
  • задержка родов (более 40 недель );
  • большая масса тела у новорожденного (более 3500 г );
  • признаки незрелости ребенка;
  • ребенок плохо берет грудь;
  • отечность стоп и кистей рук;
  • желтуха и плохое заживление пупочной раны.
Подагра
(первичная )
аутосомно-доминантный Мутации в генах, которые ответственны за образование ферментов, участвующих в обмене пуринов (конечной продукт этого обмена – мочевая кислота ). При этом увеличивается количество солей мочевой кислоты, которые накапливается в тканях, вызывая их токсическое поражение.
  • воспаление почек;
  • поражение суставов (особенно кисти и стопы ).
Болезни соединительной ткани и костей
Болезнь Марфана аутосомно-доминантный Мутации вызывают нарушение образования одного из белков соединительной ткани – фибриллина, отвечающего за эластичность и сократимость, в результате ткани (особенно сухожильные ) становятся чрезмерно растяжимыми.
  • высокий рост;
  • худоба;
  • длинные тонкие пальцы;
  • деформация грудной клетки и искривление позвоночника .
Несовершенный остеогенез аутосомно-доминантный Болезнь развивается из-за мутации в генах коллагена – белка, который обеспечивает прочность костей, суставов и связок.
  • повышенная ломкость костей;
  • аномалии зубов;
  • катаракта;
  • голубая окраска склер;
  • прогрессирующее снижение слуха.
Болезни крови
Гемофилия Мутация в генах, которые кодируют (несут код для образования ) VIII и IX факторов свертывания крови, передается от матери, но болеют только мальчики (девочки являются только носителями «больного» гена ).
  • кровотечения и долго не исчезающие кровоподтеки после незначительных травм ;
  • хроническая боль в крупных суставах (кровоизлияние в сустав ).
Гемоглобинопатии
(талассемия и серповидно-клеточная анемия )
аутосомно-доминантный (иногда аутосомно-рецессивный ) Нарушение образования молекулы гемоглобина , который входит в состав эритроцитов и является переносчиком кислорода. В результате образуется гемоглобин с новыми свойствами.
  • синюшность кожи;
  • увеличение печени и селезенки;
  • боли в животе;
  • выделение черной мочи;
  • иногда задержка физического, психического и полового развития.
Болезни кожи
Ихтиоз, сцепленный с полом рецессивное наследование, сцепленное с X-хромосомой Мутации в гене вызывает дефицит фермента стеролсульфатазы, что приводит к задержке отторжения ороговевших кожных чешуек. Болезнь передается только от матери, при этом болеют только мальчики.
  • ороговение кожи, по виду напоминающее рыбью чешую.
Буллезный эпидермолиз
(наследственная пузырчатка )
аутосомно-доминантный (иногда рецессивный ) Мутация происходит в генах, регулирующих структуру белков кожи и слизистых оболочек.
  • на коже и слизистых оболочках образуются большие пузыри (самостоятельно или при незначительной травматизации );
  • после вскрытия пузырей образуется раневая поверхность (эрозия ), которая заживает с образованием грубых рубцов.
Болезни нервной системы и глаз
Хорея Гентингтона
(Хантингтона )
аутосомно-доминантный Болезнь возникает при мутации в гене, который кодирует белок хантингин (считается, что он предотвращает гибель клеток ).
  • начало симптомов постепенное, обычно в возрасте 35 – 50 лет;
  • беспорядочные, быстрые и размашистые движения;
  • резкая мышечная слабость;
  • гримасничанье;
  • психические расстройства.
Дальтонизм рецессивное наследование, сцепленное с X-хромосомой Мутация в гене, который ответственен за образование пигментов, реагирующих на определенные цвета, передается от матери, болеют только мальчики.
  • отсутствие восприятия некоторых цветов (чаще всего красного и зеленого ).

Хромосомные болезни

Хромосомные болезни обусловлены изменениями количества хромосом (геномные мутации ) или их строения.

Суть хромосомных болезней состоит в том, что избыток или недостаток генетической информации (количество хромосом ) влияет на ход реализации всей нормальной программы развития.

К наиболее распространенным хромосомным болезням относятся:

  • Синдром Дауна – наличие лишней (третьей ) 21-й хромосомы. Такое нарушение становится причиной слабоумия, пороков развития сердца и желудочно-кишечного тракта, характерного внешнего вида (круглая голова, монголоидный разрез глаз, большой язык и полуоткрытый рот ).
  • Синдром Эдвардса – возникает вследствие наличия дополнительной третьей 18-й хромосомы. Синдром проявляется умственной отсталостью, чрезмерной подвижностью пальцев, низко расположенными ушами, пороками внутренних органов, «заячьей губой » и «волчьей пастью » (расщелины верхней губы и неба ), а также аномальной стопой («стопа-качалка» ).
  • Синдром Патау – наличие дополнительной 13-й хромосомы. Патология проявляется микроцефалией (уменьшение размеров головы ), расщелинами губы и неба, пороками сердца и конечностей.
  • Синдром Шерешевского-Тернера – отсутствие у представительниц женского пола второй женской (X ) хромосомы (ее хромосомный набор имеет вид 45 X0 ). При этом синдроме имеются отеки кистей и стоп, кожные складки на шее, отсутствует мимика на лице («лицо сфинкса» ). В более старшем возрасте болезнь становится причиной полового недоразвития, отсутствия месячных и бесплодия.
  • Синдром Клайнфельтера – наличие одной или нескольких дополнительных женских хромосом у лиц мужского пола (кариотип может иметь вид 47 XXY, 48 XXXY ). Это нарушение проявляется евнухоидным телосложением, увеличением грудных желез, недоразвитием яичек, отсутствием растительности на лице, высоким ростом и длинными конечностями (особенно верхними ).
  • Синдром «кошачьего крика» – возникает из-за исчезновения части 5-й хромосомы. Характерным симптомом является особенный плач, напоминающий крик кошки. Кроме этого у больных наблюдается умственное и физическое недоразвитие, лунообразное лицо и другие врожденные пороки.

Болезни с наследственной предрасположенностью (мультифакториальные )

Болезни с наследственной предрасположенностью также являются генными болезнями, однако имеют одну важную особенность – они проявляются только при воздействии одного или нескольких факторов внешней среды, причем как в течение беременности , так и после рождения.

Виды мультифакториальных болезней

Врожденные пороки развития Психические и нервные болезни Распространенные болезни «среднего» возраста и аутоиммунные болезни
  • расщелина губы («заячья» губа );
  • расщелина неба («волчья» пасть );
  • расщепление позвоночника и частичное или полное отсутствие костей свода черепа );
  • стеноз привратника;
  • врожденный вывих бедра;
  • косолапость;
  • гидроцефалия (водянка головного мозга );
  • гипоспадия (внешнее отверстие уретры у мальчиков открывается на стволе полового члена ).
  • некоторые виды психоза ;
  • сахарный диабет;
  • аллергические болезни (ринит , дерматит , бронхиальная астма );
  • злокачественные болезни;
  • системная красная волчанка , ревматоидный артрит .


К мультифакториальным болезням относятся также некоторые формы врожденного гипотиреоза (пониженной функции щитовидной железы ).

Митохондриальные болезни

Митохондрии – это элементы клетки, которые обеспечивают ее энергией и выполняют функцию тканевого дыхания. Митохондриальные болезни – это группа наследственных заболеваний, которые возникают вследствие дефектов ДНК митохондрий. Они передаются только по материнской линии, так как ДНК митохондрий содержат только яйцеклетки.

Митохондриальные болезни могут длительное время не проявляться, потому что в митохондриях одновременно присутствуют нормальная и мутантная ДНК, и до определенного момента митохондрии «справляются» с нагрузкой.

Больше всего энергии потребляют мышцы и нервные клетки, поэтому при болезнях митохондрий, в первую очередь, развиваются миопатии (болезни мышц ), в том числе и кардиомиопатии (болезни сердечной мышцы ), и энцефалопатии (неврологические проблемы ).

При митохондриальных болезнях чаще всего поражаются следующие органы:

  • центральная нервная система – судороги, эпилепсия, нарушения сознания, глухота и другие симптомы;
  • скелетные мышцы – слабость мышц и их атрофия;
  • сердце – кардиомиопатии , аритмии и блокады сердца;
  • орган зрения – слепота , нистагм, катаракта и другие симптомы;
  • почки – нефрит, почечная недостаточность ;
  • печень – увеличение печени и печеночная недостаточность;
  • костный мозг – анемия, нейтропения (уменьшение количества нейтрофильных лейкоцитов );
  • эндокринная система – диабет, нарушение полового созревания и другие болезни.
Поражения различных органов объединяются в синдромы, главным отличием которых является многообразие симптомов, на первый взгляд никак не связанных друг с другом (например, сахарный диабет и глухота ).

Болезни генетической несовместимости матери и плода

Болезни наследственной несовместимости матери и плода возникают только во время вынашивания плода, то есть во время беременности. Они не передаются по наследству, но в их основе лежит наследственный признак, который плод наследует от отца и который отсутствует у матери, а именно антигены эритроцитов.

Антигены – это белки, которые у каждого человека имеют специфическую структуру. Именно по этим белкам иммунные клетки отличают «свои» клетки от «чужих». Поэтому, говоря о несовместимости матери и плода, имеется в виду их иммунологическая несовместимость, то есть реакция материнского организма на антигены эритроцитов плода, которые отсутствуют у матери. К антигенам эритроцитов относятся резус-фактор (D-антиген ) и антигены группы крови (A и B ).

Иммунологическая несовместимость матери и плода может возникать в следующих случаях:

  • у матери резус крови отрицательный (отсутствует антиген D ), у ребенка – положительный (имеется антиген D );
  • у матери нулевая (первая ) группа крови, а у ребенка – A (вторая ), B (третья ) или AB (четвертая );
  • у матери вторая группа крови, а у ребенка – третья (или наоборот );
  • у матери вторая или третья группа, а у ребенка – четвертая.
Беременность, которая протекает с иммунологической несовместимостью, называется конфликтной. Последствием конфликта становится атака антигенов эритроцитов плода материнскими иммунными частицами (антителами ), что приводит к разрушению самих эритроцитов.

Разрушение эритроцитов вследствие иммунологической несовместимости матери и плода называется гемолитической болезнью плода или новорожденного («гемолиз» дословно означает разрушение крови ).

Гемолитическая болезнь новорожденных называется также резус-эритробластозом или ABO-эритробластозом, в зависимости от причины.

При разных резусах во время первой беременности количество антител недостаточно, чтобы вызвать серьезные нарушения у плода. Число антител становится критичным при второй или третьей беременности, при этом неважно как закончились предыдущие беременности (роды, выкидыш , аборт ). Различные антигены по системе группы крови вызывают ответную иммунную реакцию со стороны матери уже при первой беременности (2/3 случаев гемолитической болезни плода ).

Гемолитическая болезнь новорожденных имеет следующие симптомы:

  • желтушность кожи и склер;
  • отечность живота;
  • вялость, бледность новорожденного;
  • ребенок плохо берет грудь и плохо набирает вес;
  • увеличение печени;
  • высокий уровень билирубина в крови.

С какими симптомами обращаются к генетику?

Не существует каких-то отдельных симптомов или жалоб, которые можно было бы отнести к разряду «это к генетику». Однако бывают состояния организма, причину которых установить с помощью обычных или, как их называют врачи, рутинных анализов не представляется возможным.

К врачу-генетику редко обращаются прямо. Исключением могут быть случаи, когда кто-то из членов семьи обращался к данному специалисту по поводу тех же жалоб. Чаще всего направление на консультацию к генетику дают такие врачи как акушер -гинеколог , репродуктолог и педиатр.

Состояния, при которых следует обратиться к врачу-генетику

Симптом Механизм развития Какие исследования необходимы для выявления причины? О каких заболеваниях может свидетельствовать?
Бесплодие
(первичное )
- наследственные заболевания являются причиной недостаточного развития или пороков половых желез и половых органов.
  • общий анализ крови , анализ мочи и анализ кала ;
  • биохимический анализ крови (ферменты, гормоны );
  • цитогенетический анализ;
  • анализ ДНК;
  • биопсия мышц.
  • хромосомные болезни ( , синдром Клайнфельтера );
  • моногенные болезни (например, муковисцидоз , адреногенитальный синдром, гипотиреоз );
  • митохондриальные болезни.
Привычное невынашивание беременности
(более 2 раз подряд )
- отсутствие условий для созревания эмбриона из-за врожденной недоразвитости слизистой оболочки матки ;

Наследственное нарушение выработки гормонов в яичниках не может обеспечить нормальный гормональный фон беременности.

  • медико-генетическая консультация;
  • клинико-генеалогический анализ;
  • биохимический анализ крови (скрининг беременных );
  • цитогенетический анализ;
  • биопсия хориона;
  • амниоцентез;
  • кордоцентез;
  • анализ ДНК (матери );
  • ДОТ-тест;
  • иммунологический анализ крови.
  • хромосомные аномалии плода;
  • тяжелые наследственные болезни (генные болезни );
  • болезни генетической несовместимости матери и плода (резус-конфликт );
  • болезни с наследственной предрасположенностью (особенно аутоиммунные болезни матери ).
Выкидыши
Врожденные пороки развития - внешний или внутренний дефект развития, который возник во внутриутробном периоде ;

Отсутствие или видоизменение белков, которые ответственны за какой-либо процесс в организме.

  • медико-генетическая консультация;
  • дерматоглифический анализ;
  • биохимический анализ крови;
  • биохимический скрининг новорожденных («пяточный тест» );
  • цитогенетический анализ;
  • анализ ДНК;
  • иммунологически анализ крови новорожденного и матери.
  • хромосомные болезни;
  • наследственные болезни (генные болезни );
  • болезни с наследственной предрасположенностью (врожденные аномалии ).
Симптомы, которые появились сразу после рождения ребенка
Отставание ребенка в физическом и умственном развитии - токсическое воздействие накопленных побочных продуктов обмена веществ при дефиците ферментов;

Врожденное поражение головного мозга.

  • медико-генетическая консультация;
  • клинико-генеалогический анализ;
  • биохимический анализ крови;
  • цитогенетический анализ;
  • анализ ДНК;
  • биопсия мышц.
  • хромосомные болезни;
  • наследственные болезни (болезни обмена веществ, гемоглобинопатии, несовершенный остеогенез );
  • митохондриальные болезни.
Неправильное физическое
(в том числе половое )
развитие ребенка
- образование непрочных костей или слишком длинных сухожилий;

Гормональный дисбаланс при врожденных аномалиях эндокринных желез (в том числе половых ).

  • медико-генетическая консультация;
  • клинико-генеалогический анализ;
  • биохимический анализ крови (ферментодиагностика, коагулограмма , анализ гормонов );
  • цитогенетический анализ;
  • анализ ДНК;
  • биопсия мышц и костного мозга.
  • наследственные болезни (например, синдром Марфана, адреногенитальный синдром );
  • хромосомные болезни (синдром Клайнфельтера, синдром Шерешевского-Тернера ).
Лечащий врач подозревает наследственное заболевание - симптомы, которые трудно поддаются лечению, часто связаны с генетически обусловленным «сбоем».
  • медико-генетическая консультация;
  • клинико-генеалогический анализ;
  • цитогенетический анализ;
  • анализ ДНК;
  • биопсия мышц, печени и костного мозга.
  • наследственные болезни;
  • хромосомные болезни;
  • митохондриальные болезни;
  • болезни с наследственной предрасположенностью (мультифакториальные болезни ).

Лозунг «лучшее лечение болезней – это их профилактика» как нельзя лучше подходит для определения направления, в котором работает врач-генетик. К этому специалисту чаще обращаются не для того, чтобы уточнить диагноз наследственных болезней и провести лечение, а чтобы этих самых наследственных болезней не возникало у будущих детей. Поэтому на сегодняшний день существуют четкие показания для обращения к врачу-генетику, даже при отсутствии симптомов у самих родителей.

Ситуации, когда следует обратиться к врачу-генетику

Показания Обоснование Какие исследования проводятся? Какие болезни выявляются?
Планирование беременности - родители могут быть носителями мутировавшего гена (у самих симптомы болезни отсутствуют );

Имеется явный риск рождения ребенка с наследственной патологией (ранее рожденный ребенок или родственник имеет наследственное заболевание ).

  • общий анализ крови, мочи и кала;
  • биохимический анализ крови; (ферментодиагностика, гормоны, печеночные и почечные пробы );
  • анализ ДНК;
  • цитогенетический анализ;
  • иммунологический анализ.
  • наследственные болезни (носительство );
  • митохондриальные болезни у матери (риск наследования );
  • при отрицательном резусе у женщины );
  • болезни с наследственной предрасположенностью (риск наследования и осложнения во время беременности ).
Беременность
(нормальная )
- пороки развития плода формируются во внутриутробном периоде при наличии наследственной болезни или воздействии инфекции на плод.
  • биохимический анализ крови (скрининг тест беременных );
  • УЗИ плода;
  • ДОТ-тест;
  • иммунологический анализ.
  • хромосомные болезни плода (в первую очередь синдром Дауна );
  • гемолитическая болезнь плода (резус-конфликт );
  • аномалии развития плода (мультифакториальные врожденные пороки и наследственные болезни ).
Беременность, протекающая с осложнениями - наличие патологии плода может повышать нагрузку на организм матери;

Воздействие неблагоприятных факторов внешней среды в течение первых трех месяцев беременности может стать причиной серьезных болезней плода.

  • медико-генетическая консультация;
  • биохимический анализ крови (скрининг тест беременных );
  • УЗИ плода;
  • ДОТ-тест;
  • амниоцентез;
  • биопсия хориона и плаценты;
  • кордоцентез;
  • цитогенетический анализ;
  • анализ ДНК;
  • биопсия органов плода;
  • фетоскопия;
  • иммунологический анализ.
  • хромосомные аномалии у плода;
  • врожденные пороки развития.
Новорожденные дети - ряд наследственных заболеваний начинают проявляться с рождения, однако многие болезни протекают скрытно.
  • биохимический скрининг тест новорожденных («пяточный тест» );
  • иммунологический анализ.
  • фенилкетонурия , галактоземия, муковисцидоз, врожденный гипотиреоз, адреногенитальный синдром ).
Возраст
35 – 55 лет
- некоторые наследственные заболевания проявляются в зрелом возрасте, в связи с тем, что для развития проявлений болезни необходимо время или организм способен довольно долго компенсировать болезненное состояние.
  • медико-генетическая консультация;
  • клинико-генеалогический анализ;
  • биохимический анализ крови;
  • цитогенетический анализ;
  • анализ ДНК;
  • биопсия мышц, печени.
  • мультифакториальные болезни;
  • наследственные болезни (генные болезни с поздним проявлением );
  • митохондриальные болезни.
Родственные браки - если оба родителя являются носителями гена-мутанта, вызывающего болезнь (а при кровном родстве вероятность этого высока ), то ребенок получит два «больных» гена, в то время как при разных генетических данных родителей (представители не одного рода ) у ребенка болезнь может не проявиться (есть «запасной» здоровый ген ).
  • медико-генетическая консультация;
  • клинико-генеалогический анализ;
  • УЗИ плода;
  • биохимический анализ крови (скрининг тест беременных );
  • амниоцентез;
  • биопсия хориона и плаценты;
  • кордоцентез;
  • цитогенетический анализ;
  • ДОТ-тест;
  • анализ на ДНК;
  • иммунологический анализ.
  • наследственные болезни (носительство ).

Какие исследования проводит генетик?

Прием врача-генетика называется медико-генетической консультацией.

Медико-генетическое консультирование включает следующие этапы:

  • Первый этап (диагностика ) – проводится уточнение предполагаемого диагноза с помощью специфических (сугубо генетических ) и дополнительных (общих ) анализов и исследований;
  • Второй этап (прогнозирование ) – на основе проведенных исследований врач-генетик осуществляют оценку генетического риска (прогноз наследственных болезней у потомства ), то есть риск рождения детей с наследственными заболеваниями.
  • Третий этап (заключение ) – врач-генетик озвучивает свое мнение и дает советы на счет планирования беременности. При высоком риске рождения детей с наследственной патологией он может порекомендовать отказаться от планирования беременности, однако решение всегда принимают сами будущие родители.
Генетические анализы и исследования чаще всего применяются в так называемой пренатальной диагностике наследственных болезней (pre – до, natale – рождение ), то есть диагностике генетических заболеваний у плода во время беременности.

Пренатальная диагностика состоит из следующих двух этапов:

  • анализы, взятые у будущей мамы (косвенные методы );
  • исследование самого плода (прямые методы ).

Инструментальные методы диагностики наследственных заболеваний проводит не сам генетик, а врачи ультразвуковой диагностики, хирурги или акушеры-гинекологи.

Инструментальные методы диагностики генетических болезней позволяют осуществить следующее:

  • обнаружить пороки или косвенные признаки, указывающие на наследственное заболевание (до родов );
  • получить материал для лабораторных генетических исследований.

Методы диагностики, которые использует врач-генетик

Исследование Какие заболевания выявляет? Как проводится?
Осмотр
  • хромосомные болезни (например, синдром Дауна );
  • моногенные болезни (например, синдром Марфана );
  • мультифакториальные врожденные пороки («заячья губа» и другие ).
Во время осмотра врач-генетик выявляет видимые пороки или особенности развития, которые характерны для той или иной генетической болезни.
Клинико-генеалогический метод
  • генные болезни;
  • болезни с наследственной предрасположенностью (мультифакториальные );
  • митохондриальные болезни;
  • хромосомные болезни (некоторые виды синдрома Дауна ).
Расспрос человека, который обратился за консультацией врача-генетика, позволяет составить родословную и болезни, которые передаются по наследству. Обычно достаточно проанализировать 2 – 3 поколения.
Дерматоглифика
  • хромосомные болезни.
Метод основан на особенностях изменения кожных рисунков ладоней и стоп при некоторых генетических заболеваниях.
Ультразвуковое исследование
  • хромосомные болезни;
  • болезни нервной трубки плода (на 16-й неделе беременности );
  • врожденные пороки развития желудочно-кишечного тракта, почек и сердца (на 20-й и 27-й неделе );
  • резус-конфликтная беременность (гемолитическая болезнь плода );
  • несовершенный остеогенез.
Исследование осуществляется в положении беременной лежа на спине с помощью ультразвукового датчика, который устанавливают над областью живота. Современные аппараты для УЗИ позволяют получить качественные и четкие изображения плода, в том числе и трехмерные.
Биопсия скелетных мышц, селезенки, костного мозга, печени
  • митохондриальные болезни;
  • наследственные болезни обмена веществ (болезнь Гоше, болезнь Вильсона, гемохроматоз );
  • несовершенный остеогенез.
Биопсию (забор тканей ) мышц проводят под местной анестезией с помощью введения тонкой иглы через кожу к мышцам. Пункцию печени для биопсии проводят под контролем ультразвукового исследования. Для получения частички костного мозга осуществляют прокол грудины или подвздошной кости. Полученный материал отправляют на генетическое и гистологическое исследование.
Амниоцентез
(забор околоплодной жидкости )
  • хромосомные болезни;
  • дефекты нервной трубки плода;
  • наследственные заболевания обмена веществ;
  • ихтиоз , сцепленный с полом;
Под контролем ультразвукового исследования в полость матки вводят иглу (через брюшную стенку или влагалище ) на 15 – 18-й неделе беременности. Цель исследования – получить небольшое количество околоплодной жидкости и зародышевых клеток для цитогенетического исследования.
Биопсия хориона и плаценты
  • хромосомные болезни;
  • наследственные болезни обмена веществ;
  • гемофилия , гемоглобинопатии );
  • другие моногенные болезни (несовершенный остеогенез, ихтиоз, сцепленный с полом ).
Биопсию хориона (ворсинчатой оболочки плодного яйца ) проводят после 8-й недели беременности, а биопсию плаценты – после 12-й. Частичку хориона получают с помощью специальных щипцов, введенных в шейку матки или вакуумного аспиратора (чаще ). Полученный материал отправляют на цитогенетическое, биохимическое и молекулярно-генетическое исследование.
Кордоцентез
(прокол вены пуповины )
  • хромосомные болезни;
  • наследственные болезни обмена веществ;
  • наследственные болезни крови (гемофилия, гемоглобинопатии );
  • резус-конфликтная беременность.
Забор крови из вены пуповины проводят под контролем ультразвукового исследования. Исследование можно осуществить с 12-й недели беременности (обычно между 18 и 24 неделей беременности ).
Фетоскопия
(эндоскопия
плода )
  • пороки развития плода.
Проводится на 16 – 22-й неделе беременности. Процедура исследования аналогична таким исследованиям как гистероскопия (изучение полости матки с помощью эндоскопа ) или лапароскопия (введение эндоскопа через брюшную стенку ). Отличие состоит только в том, что предметом изучения является плод.
Биопсия органов плода
  • ихтиоз, сцепленный с полом;
  • буллезный эпидермолиз;
  • митохондриальные болезни.
Под контролем ультразвукового исследования после 12-й недели беременности проводят забор частички кожи и мышцы, после чего полученный материал отправляют на генетическое и гистологическое исследование.

Какие лабораторные анализы проводит генетик?

Первый этап диагностики генетических болезней очень часто проводится не генетиками, а врачами различных специальностей, к которым люди обращаются со своими жалобами. Однако работа врача-генетика состоит не только и не столько в уточнении диагноза генетического заболевания, а в профилактике наследственной патологии у будущих поколений, поэтому генетические анализы могут быть назначены при отсутствии симптомов.

Общие анализы

Часто к врачу-генетику приходят с рядом уже проведенных анализов, которые были назначены лечащим врачом. Особенно это касается анализов крови, мочи и кала. Эти анализы являются «стартовыми» при любых заболеваниях, поэтому при отсутствии этих исследований среди сданных больным анализов, врач-генетик их назначит обязательно.

Особенно важен анализ крови при подозрении на гемофилию, гемоглобинопатии и гемолитическую болезнь новорожденного.

Биохимический анализ

С помощью биохимического анализа можно выявить многие наследственные заболевания. Материалом для анализов может стать кровь (в том числе взятая при кордоцентезе ), моча или околоплодная жидкость.

Биохимический анализ наследственных болезней включает:

  • ферментодиагностику – определение уровня фермента при подозрении на его недостаток или отсутствие (наследственные болезни обмена веществ );
  • коагулограмму – определение факторов свертывания и активность свертывающей системы крови (гемофилии );
  • анализ гормонов и их метаболитов (продуктов обмена ) – позволяет определить врожденный дефицит гормонов или нарушение их обмена в организме (адреногенитальный синдром, синдром Шерешевского-Тернера, синдром Клайнфельтера );
  • анализ на побочные продукты обмена веществ – лактат, кетоновые тела (митохондриальные болезни );
  • печеночные пробы (билирубин, АСТ, АЛТ, ГЛТ, щелочная фосфатаза ) – оценка состояния печени, которая часто поражается при наследственных заболеваниях;
  • почечные пробы (креатинин, мочевина, мочевая кислота ) – оценка состояния почек при ее врожденных пороках (поликистоз ) и при интоксикации организма побочными продуктами обмена веществ;
  • глюкоза – повышение (а иногда и понижение ) сахара в крови сопутствует многим наследственным болезням.

Маркеры генетических заболеваний плода (скрининг беременных )

Всем беременным женщинам показано проведение скрининга на особые маркеры (вещества-свидетели ) наследственных заболеваний у плода. Биохимические анализы, которые проводятся для профилактического выявления наследственных болезней, применяются массово и называются скринингом (от английского слова «screening» – просеивание ). Для определения маркеров наследственных болезней плода берут кровь из вены беременной женщины натощак.

Анализы, которые входят в скрининг беременных женщин

Анализ Норма Когда сдают? Причины отклонения от нормы
Альфа-фетопротеин (фетальный ) Белок можно обнаружить в околоплодных водах с 6-й недели беременности в количестве 1,5 мкг/мл (в крови его концентрация в сто раз меньше ). Содержание альфа-фетопротеина в норме увеличивается в 2 раза на 12 – 14-й неделе и резко уменьшается на 20-й неделе беременности. Двукратное исследование на 14 – 16-й и 21 – 22-й неделе беременности.
  • гидроцефалия;
  • пороки развития брюшной стенки и желудочно-кишечного тракта;
  • пороки развития почек;
  • пороки сердца;
  • внутриутробная инфекция;
  • синдром Дауна;
  • буллезный эпидермолиз;
  • несовершенный остеогенез.
Бета-ХГЧ
(бета-субъединица хорионического гонадотропина человека )
В норме со 2-й недели беременности уровень ХГЧ начинает повышаться, достигая максимума на 10 – 11-ю неделю, после чего его уровень постепенно понижается. На 8 – 13-й и 15 – 20-й неделях беременности.
  • резус-конфликт;
  • хромосомные болезни;
  • патология нервной трубки плода;
  • пороки сердца.
Эстриол
(свободный )
После 4-й недели беременности уровень эстриола в норме постоянно повышается (так как гормон синтезируется, в основном, плацентой ). На 16-й неделе беременности
  • хромосомные болезни (синдром Дауна, синдром Эдвардса , Патау );
  • патология нервной трубки плода;
  • ихтиоз, сцепленный с полом;
  • врожденные пороки сердца;
  • внутриутробная инфекция.
PAPP-A
(паппализин или ассоциированный с беременностью протеин A )
Во время беременности уровень белка постепенно растет. 12-я неделя беременности (после 14-й недели тест считается неинформативным )
  • хромосомные болезни (синдромы Дауна, Эдвардса и Патау );
  • угроза выкидыша;
  • сниженный вес плода (для данного срока ).
Плацентарный лактоген Появляется в крови с 6-й недели беременности. Уровень гормона повышается пропорционально сроку беременности (то есть по мере увеличения плаценты, где он и вырабатывается ) до 34-й недели. На 15 – 20-й и 24 – 28-й неделях беременности. резус-конфликтная беременность.

Скрининг новорожденных

Скрининг-тест новорожденных проводят, чтобы исключить наличие у ребенка некоторых наследственных заболеваний, которые не всегда можно выявить до рождения, но которые необходимо обнаружить как можно раньше. Скрининг тест обычно проводят перед выпиской малыша и его мамы из роддома (на 4 – 5-й день у доношенного и на 7-й у недоношенного ребенка ). Для этого у новорожденного берут кровь из пятки (всего несколько капель ), поэтому тест часто называют «пяточным» или просто «пяточка».

Скрининг новорожденных включает анализ крови на следующие наследственные заболевания:

  • фенилкетонурия;
  • врожденный гипотиреоз;
  • галактоземия;
  • муковисцидоз;
  • адреногенитальный синдром.
Данные об анализе получают через 10 дней. Родителей информируют, только если у ребенка имеется одно из этих заболеваний.

Цитогенетический анализ

Цитогенетический анализ – это микроскопическое изучение генетических структур клетки (хромосом ). Цитогенетический анализ позволяет выявить аномалии числа и строения хромосом, то есть хромосомные заболевания.

Цитогенетический анализ включает:

  • Кариотипирование . Кариотипированием называется определение кариотипа, то есть подсчет количества хромосом и оценка их структуры (каждая хромосома имеет характерный рисунок ). В качестве материала для исследования используют лимфоциты крови, костный мозг или биоптат ворсинок хориона (оболочка плодного яйца ). Полученные клетки выращивают на питательных средах, после чего их окрашивают и исследуют под микроскопом (хромосомы под микроскопом очень похожи на пары носков с разноцветными полосками ). Нормальный мужской кариотип – это 46 XY, а нормальный женский – 46 XX. Все остальные варианты являются отклонением от нормы.
  • Определение полового хроматина . Половой хроматин – это маленькое треугольное или округлое пятнышко, которое расположено в ядре клетки. Половой Y-хроматин представляет собой участок Y-хромосомы (мужской хромосомы ), который определяется у мужчин, а X-хроматин – это инактивированная X-хромосома. Одна из двух X-хромосом, которые ребенок получает от каждого родителя, подвергается разрушению (так как в клетке должная быть одна X-хромосома ). Этот анализ помогает определить генетический пол ребенка, который при некоторых заболеваниях не соответствует анатомическому (гермафродитизм ). В качестве материала для определения полового хроматина берут мазок с ротовой полости.

анализ ДНК )

Молекулярно-генетическая диагностика (анализ ДНК ) – это исследование конкретных участков ДНК для выявления генных и митохондриальных болезней. ДНК, которая содержится в ядре одной клетке, несет в себе информацию о геноме всего организма. В качестве материала для исследования ДНК используют лейкоциты (анализ крови ), клетки околоплодной жидкости (амниоцентез ), ворсинки хориона (биопсия хориона ), мазок с полости рта или обычный волос.

Анализ ДНК позволяет установить:

  • пол ребенка еще во время беременности;
  • наличие наследственных моногенных болезней;
  • наличие наследственной предрасположенностью к болезням (мультифакториальные болезни );
  • митохондриальные болезни.
ДНК-диагностика, в зависимости от цели, бывает следующих видов:
  • подтверждающая ДНК-диагностика – уточнение предполагаемого наследственного заболевания;
  • пресимптоматическая ДНК-диагностика – выявление наследственных болезней до появления их симптомов;
  • ДНК-диагностика носительства – обнаружение мутировавших генов, которые вызывают болезнь у потомков определенного пола, например, носителем гемофилии является женщина (не имеют симптомов ), но болеют исключительно мальчики;
  • пренатальная ДНК-диагностика – исследование генетического материала плода во время беременности;
  • преимплантационная генетическая диагностика – выявление генетических аномалий у эмбрионов (при экстракорпоральном оплодотворении ) до того как они будут имплантированы (введены ) в матку.
Профилактическое молекулярно-генетическое исследование включает скрининги на наследственные заболевания.

Существуют следующие скрининги на носительство наследственных болезней:

  • мини скрининг – анализ 20 мутаций, которые встречаются наиболее часто (например, мутации при муковисцидозе и гемохроматозе );
  • стандартный скрининг – позволяет обнаружить более 100 заболеваний;
  • экспертный скрининг – позволяет за одно исследование выявить около 2500 тысяч генов, ответственных за развитие наследственных болезней.
Кроме того, разрабатываются специальные скрининги для людей разных рас и национальностей, в которых учтены наиболее распространенные среди представителей конкретной нации болезни.

Анализ ДНК позволяет получить генетический паспорт, куда в виде наборов букв и цифр записываются данные о генах человека.

Генетический паспорт содержит следующую информацию:

  • предрасположенность к заболеваниям (в том числе и онкологическим );
  • носительство генных мутаций;
  • имеющиеся генетические болезни;
  • данные об эффективности лекарств и их необходимой дозе;
  • чувствительность данного организма к конкретным вирусам и бактериям ;
  • предпочтительный стиль жизни (диета , спорт ).

ДОТ-тест

ДОТ-тест – это метод выявления хромосомных болезней с помощью анализа ДНК плода, которые можно обнаружить в крови у матери во время беременности. Тест можно проводить с 10-й недели беременности. Для анализа берется образец крови матери, после чего оттуда выделяют свободно циркулирующие ДНК плода и проводят их генетическое исследование. Результаты можно получить через 12 дней.

ДОТ-тест позволяет выявить следующие хромосомные аномалии:

  • синдром Дауна;
  • синдром Эдвардса;
  • синдром Патау;
  • синдром Шерешевского-Тернера;
  • синдром Клайнфельтера.

Иммунологические методы диагностики

Иммунологические методы основаны на определении антигенов, которые играют важную роль в развитии аутоиммунных болезней, а также болезней несовместимости матери и плода.

Иммунологический анализ позволяет обнаружить:

  • антитела в крови и молоке матери к антигенам плода во время беременности (несовместимость матери и плода );
  • комплексы антиген-антитело в крови у новорожденного (гемолитическая болезнь новорожденного );
  • специфические иммуноглобулины класса E, которые обнаруживаются у больных бронхиальной астмой, атопическим ринитом и атопическим дерматитом .

Какие болезни лечит генетик?

Лечением наследственных болезней занимается не сам генетик, а практикующие врачи различных специальностей. Однако врачи-генетики составляют схемы лечения и профилактики, которые лечащие врачи используют в качестве ориентира.

Существуют следующие методы лечения наследственных болезней:

  • Этиологическое лечение – это устранение причины болезни (этио – причина ) с помощью генной терапии. Генная терапия – это замена измененного генетического материала на нормальный участок ДНК (экспериментальные методы ).
  • Патогенетическое лечение – в медицине используют термин «патогенетический», когда речь идет о механизме развития болезни (патогенез – ход патологического процесса ). Таким образом, цель патогенетического лечения это вмешательство в ход патологического процесса в организме на уровне ферментов, их субстратов (веществ, на которые эти ферменты воздействуют ) или замещение конечного продукта, который должен образоваться после воздействия фермента на субстрат.
  • Хирургическое лечение – проводится, если наследственное заболевание приводит к изменению анатомии органа. В некоторых случаях достаточно провести коррекцию (пластическую операцию ), в других – необходимо удаление органа или его части. Если орган является жизненно необходимым, и у него нет пары (например, почки ), то после его удаления человеку пересаживают донорский орган или ткань.
  • Симптоматическое лечение – устранение или смягчение проявлений болезни. Этот метод применяется при всех генетических болезнях и очень часто является единственным способом лечения.

Болезни, план лечения которых составляет врач-генетик

Заболевание Основные методы лечения Длительность лечения Прогноз
Фенилкетонурия
  • диетотерапия – исключение фенилаланина из рациона, применение особых смесей аминокислот (фенил-фри, нутриция );
  • симптоматическое лечение – улучшение мозгового кровообращения (пирацетам ), метаболизм тканей (сапроптерин ).
- диетотерапию начинают сразу после постановки диагноза и продолжают до 16 – 18 лет;

К диете прибегают также, если женщина с фенилкетонурией планирует забеременеть;

Симптоматическое лечение назначается в индивидуальном порядке.

  • чем раньше выявлена болезнь и назначена диета, тем прогноз благоприятнее.
Галактоземия
  • диетотерапия – исключение молока и молочных продуктов, применение молочных смесей, не содержащих лактозу;
  • симптоматическое лечение – борьба с обезвоживанием (введение жидкостей внутривенно ), поддержание нормального уровня глюкозы в крови, антибиотики .
- диету нужно поддерживать постоянно;

Медикаментозное лечение проводят при появлении симптомов.

  • чем раньше начинают диету, тем лучше прогноз;
  • имеется риск «поздних» осложнений (нарушение речи, задержка физического развития, недостаточность яичников у девочек ).
Лактазная недостаточность - длительность лечения (курсами или постоянно ) зависит от тяжести заболевания.
  • прогноз зависит от состояния легких (легочно-сердечной недостаточности );
  • средняя продолжительность жизни обычно 35 лет.
Болезнь Гоше
  • медикаментозное лечениезаместительная терапия недостающими ферментами (церезим, завеска );
  • хирургическое лечение – удаление селезенки (частичное или полное ), трансплантация костного мозга.
- требуется постоянный прием (инъекции ) недостающего фермента.
  • болезнь может иметь доброкачественное течение (прогноз благоприятный ) и злокачественное (дети погибают в возрасте 1 – 2 года ).
Гемохроматоз
  • диетотерапия – исключение продуктов, содержащих железо (например, мясо, яблоки );
  • выведение железа из организма – кровопускания;
  • медикаментозное лечение – десферал;
  • хирургическое лечение – протезирование суставов.
- диету поддерживают постоянно;

Кровопускания проводят до нормализации содержания железа в крови;

Препараты применяют длительно.

  • прогноз не слишком благоприятный, имеется высокий риск цирроза и рака печени , а также тяжелой анемии.
Болезнь Вильсона
  • диетотерапия – исключение продуктов, богатых медью (например, мясо, морепродукты );
  • медикаментозное лечение – связывание меди (D-пеницилламин ), уменьшение всасывания меди в кишечнике (сульфат цинка );
  • антидепрессанты , гепатопротекторы и другие препараты;
  • хирургическое лечение – трансплантация печени.
- длительность лечения зависит от тяжести заболевания на момент ее диагностики;

Требуется постоянная диета.

  • болезнь с течением времени прогрессирует, поэтому, чем раньше начать лечение, тему лучше будет прогноз.
Синдром Жильбера
  • профилактика обострений – исключение алкоголя, обезвоживания, голодания и препаратов, перегружающих печень;
  • диетотерапия – ограничить острые, жирные и консервированные продукты;
  • симптоматическое лечение – гепатопротекторы (гепабене, карсил ), ферменты (фестал, мезим ), витамины (особенно B6 ).
- лекарственные препараты применяют обычно в период обострения.
  • прогноз благоприятный, некоторые авторы считают этот синдром особенностью организма.
Адреногенитальный синдром
  • медикаментозное лечение – заместительная гормональная терапия ;
  • хирургическое лечение – коррекция наружных половых органов у девочек.
- заместительная гормональная терапия проводится в течение всей жизни.
  • при своевременном лечении у девушек формируются женские половые признаки и менструальный цикл.
Вторичный гипотиреоз
  • заместительная гормональная терапия – прием левотироксина (гормона щитовидной железы ).
- необходимо пожизненное лечение левотироксином.
  • прогноз благоприятный, если лечение начато до 3 месяцев жизни и после проводится регулярно;
  • при отсутствии лечения у ребенка развивается кретинизм .
Подагра (наследственная )
  • диетотерапия – исключение продуктов, богатых веществами, которые в организме превращаются в мочевую кислоту (субпродукты, морепродукты, мясо );
  • медикаментозное лечение – угнетение воспалительной реакции (колхицин, ибупрофен ), торможение образования мочевой кислоты (аллопуринол ).
- диету необходимо поддерживать постоянно;

Лечение проводят длительно, в некоторых случаях показан постоянный прием препаратов.

  • болезнь обычно проявляется после 40 лет;
  • имеется высокий риск развития артериальной гипертензии, сахарного диабета.
Синдром Марфана
  • симптоматическое хирургическое лечение – протезирование клапанов сердца и аорты, коррекция зрения и пластика грудной клетки;
  • симптоматическое медикаментозное лечение – поддержание нормального артериального давления и пульса (небиволол, периндоприл ).
- лекарственная терапия позволяет поддержать сердце и выбрать удачный момент для операции.
  • прогноз зависит от выраженности поражения сердечно-сосудистой и дыхательной системы, поэтому раннее лечение увеличивает продолжительность жизни.
Несовершенный остеогенез
  • медикаментозное лечение – бисфосфонаты (бонефос, зомета ), гормон роста, витамин D3, препараты кальция и другие;
  • хирургическое лечение – лечение переломов и укрепление костей (титановые стержни ).
- некоторые препараты нужно принимать постоянно.
  • прогноз обычно неблагоприятный;
  • полностью излечить болезнь не удается, возможно только частично устранить симптомы и облегчить жизнь больного.
Гемофилия
  • профилактика кровотечений – исключить занятие физкультурой, нельзя принимать аспирин , маленькие дети могут носить защитные наколенники и налокотники;
  • лекарственная терапия – введение нужных факторов свертывания (VIII и IX ), свежезамороженной плазмы внутривенно, прием ангиопротекторов и гемостатиков (дицинон, аминокапроновая кислота ).
- длительность остановки кровотечения зависит от его выраженности - «малые» кровотечения ликвидируются за 2 – 3 дня, а «большие» – в течение 1 – 2 недель.
  • склонность к кровотечениям сохраняется в течение всей жизни;
  • имеется риск заражения вирусным гепатитом или ВИЧ при переливании компонентов крови;
  • продолжительность жизни зависит от тяжести заболевания.
Гемоглобинопатии
  • профилактика обострений – достаточное питье, пребывание на свежем (но не холодном ) воздухе;
  • трансфузионная терапия – переливание крови или эритроцитарной массы;
  • медикаментозное лечение – фолиевая кислота , гидроксимочевина (при серповидно-клеточной анемии );
  • хирургическое лечение – трансплантация костного мозга, удаление селезенки.
- фолиевую кислоту нужно принимать каждый день;

Переливание крови проводят периодически для поддержания нормального уровня гемоглобина в крови.

  • часто болезнь протекает бессимптомно;
  • при некоторых формах (серповидно-клеточная анемия ) правильное лечение позволяет людям иметь детей и дожить до старости;
  • при талассемиях пересадка костного мозга от брата и сестры является во многих случаях эффективным лечением.
Ихтиоз, сцепленный с полом
(врожденный )
  • медикаментозное лечение – этретинат и ацитретин внутрь, смягчающие средства (вазелин, пропиленгликоль, салициловая кислота ) местно.
- лечение проводят до стабилизации состояния, после чего дозу препаратов постепенно уменьшают до минимальной эффективной.
  • прогноз не улучшается с возрастом, в отличие от других форм ихтиоза;
  • заболевания обостряется в холодное время года.
Буллезный эпидермолиз (наследственная пузырчатка )
  • медикаментозное лечение – дифенин, эритромицин , витамин E, ретинол, тигазон;
  • местное лечение – коллагеновое губчатое покрытие на эрозии, препараты местного действия (антисептики, бепантен, солкосерил, левомеколь ), физиотерапия (УФ-облучение );
  • лечение отдельных симптомов – антибиотики, антигистаминные препараты (зиртек ), переливание крови, поливитаминные препараты, облепиховое масло полоскание полости рта отварами.
- препараты принимают длительно;

В период обострения ведется активное лечение, а вне обострений – общеукрепляющее.

  • прогноз при простых формах более благоприятный;
  • при распространенной форме и осложнениях (длительно не заживающие раны ) есть риск злокачественного перерождения кожи (спиналиома ).
Хорея Гентингтона
  • медикаментозное лечение – смягчение симптомов (галоперидол, хлорпромазин, резерпин, сибазон ).
- выбор лекарств и необходимость их назначения решается индивидуально.
  • прогноз неблагоприятный, болезнь прогрессирует медленно, но неуклонно;
  • продолжительность жизни после появления первых симптомов составляет в среднем 17 лет.
Дальтонизм
  • ношение специальных очков.
  • болезнь влияет только на качество жизни.
Хромосомные болезни
  • хирургическое лечение – коррекция некоторых пороков развития;
  • симптоматическое лечение – проведение заместительной гормональной терапии, лечение злокачественных осложнений, профилактика инфекций.
- медикаментозное лечение отдельных симптомов возможно только при некоторых болезнях (синдром Шерешевского-Тернера, синдром Клайнфельтера ).
  • прогноз зависит от конкретной болезни;
  • продолжительность жизни зависит от тяжести врожденных пороков развития внутренних органов.
Митохондриальные болезни
  • немедикаментозное лечение – физиотерапия, аэробная гимнастика, легкая или умеренная физическая нагрузка;
  • медикаментозное лечение – лечение эпилепсии, сердечной недостаточности , почечной и печеночной недостаточности, улучшение метаболизма клеток;
  • хирургическое лечение – блефаропластика (пластика верхнего века ), кохлеарная имплантация (лечение тугоухости ), трансплантация сердца, почек, печени и другие виды коррекции.
- в некоторых случаях лечение проводится курсами;

При возникновении симптомов недостаточности органов требуется постоянное лечение медикаментами.

  • прогноз зависит от многих факторов;
  • чем раньше возникают симптомы, тем хуже прогноз.
Болезни с наследственной предрасположенностью
  • профилактика – анализ ДНК на наличие предрасположенности и предотвращение воздействия провоцирующих болезнь факторов (например, контакт с аллергеном , жирная пища );
  • лечение проявлений болезни – осуществляется врачами различных специальностей (например, бронхиальную астму лечат пульмонологи или терапевты, инфаркт – кардиологи );
  • хирургическое лечение – коррекция врожденных пороков развития.
- после того как болезнь проявляется, требуется постоянное лечение и контроль со стороны врачей.
  • прогноз зависит от многих факторов, например, от выраженности длительности воздействия внешних факторов, от особенностей самого организма;
  • при злокачественных образованиях, имеющих наследственную предрасположенность раннее обнаружение (еще до развития симптомов ) предрасположенности помогает организовать своевременное лечение.
Гемолитическая болезнь новорожденных
(резус-конфликтная беременность )
  • фототерапия;
  • переливание крови ребенку;
  • очищение кишечника;
  • активация функций печени (фенобарбитал );
  • желчегонные препараты (аллохол, холестирамин );
  • дезинтоксикация (введение растворов внутривенно );
  • введение анти-D-глобулина женщинам, имеющим отрицательный резус (в 1-й день после родов ).
- лечение проводят до исчезновения симптомов и восстановления уровня гемоглобина.
  • прогноз в целом благоприятный при своевременном выявлении и лечении;
  • также прогноз зависит от тяжести заболевания (количество погибших эритроцитов и длительность гемолиза ).

Устройство светодиодной лампы на 220В значительно сложнее, чем у аналогичной лампы накаливания. Пытаясь сохранить привычную грушевидную форму, инженерам пришлось немало потрудиться. И, как оказалось, не зря! Новые осветительные приборы практически не греются, потребляют малое количество электроэнергии и стали значительно менее хрупкими. Но чего же особенного в светодиодной лампе и в чем сложность ее схемы? Давайте разберемся.

Конструктивная схема

Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов. Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла. К корпусной части светодиодной лампы относится цоколь, оболочка из пластика, внутри которой размещен драйвер, и полупрозрачная крышка в виде полусферы, по совместительству являющаяся рассеивателем света. В дорогих моделях ламп большую часть корпуса занимает ребристый радиатор из алюминия или специального теплопроводящего пластика. В лампочках бюджетного класса радиатор либо вовсе отсутствует, либо расположен внутри, а по окружности корпуса сделаны отверстия. Дешёвая китайская продукция мощностью до 7 Вт вовсе имеет сплошной корпус, без какого-либо отвода тепла.

В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла. В дешевых китайских моделях эта плата либо просто вставлена в пазы корпуса, либо прикреплена саморезами к металлической пластине для охлаждения кристаллов. Эффективность такого охлаждения крайне низкая, так как пластина имеет малую площадь, да и наносить термопасту китайские производители, как правило, забывают.
Вывод излучения происходит через рассеиватель, как правило, из матового пластика. А в дешевых светодиодных лампах на 220В такой корпус ещё надёжно скрывает недостатки китайской сборки от любопытных глаз потребителя. Крепится рассеиватель к основанию либо герметиком, либо резьбовым соединением.

Электрическая схема

Касательно электрической части между светодиодными лампами на 220В разных ценовых категорий также много отличий. В этом можно убедиться сразу после демонтажа рассеивателя. Достаточно рассмотреть качество пайки SMD элементов и соединительных проводов.

Недорогой китайской лампы на 220В

В лампочках стоимостью 2-3$ отсутствует какая-либо симметрия на плате со светодиодами, что свидетельствует о ручной пайке, а провода выбраны с минимально возможным сечением. Вместо надежного драйвера в них собрана простая схема бестрансформаторного питания с конденсаторами и выпрямителем. Напряжение сети сначала снижается неполярным металлопленочным конденсатором, выпрямляется, а затем сглаживается и повышается до нужного уровня. Ток нагрузки ограничивается обычным SMD резистором, который расположен на печатной плате со светодиодами.
При диагностике и ремонте светодиодных ламп такого типа важно соблюдать технику безопасности, т.к. все элементы электрической цепи потенциально находятся под высоким напряжением. Прикоснувшись пальцем к токоведущей части схемы по неосторожности можно получить электрический удар, а соскользнувший щуп мультиметра может закоротить провода с неприятными последствиями.

Фирменной светодиодной лампы

Фирменная светодиодная продукция отличается не только приятным внешним видом, но и качеством элементной базы. Непосредственно драйвер имеет более сложное устройство и зачастую собирается одним из двух способов. Первый предусматривает наличие импульсного трансформатора, импульсного преобразователя напряжения с последующей стабилизацией тока нагрузки.

Во втором случае обходятся без трансформатора, а основная функциональная нагрузка ложится на специальную микросхему – сердце драйвера. Её универсальность в том, что она стабилизирует входное напряжение, поддерживает выходной ток с заданной частотой (ЧИМ) или шириной импульса (ШИМ), допускает возможность диммирования, имеет систему отрицательной обратной связи. В качестве примера можно назвать, например, CPC9909.
Светодиоды в лампе на 220В с токовым драйвером надёжно защищены от перепадов напряжения и помех в сети, ток через них соответствует номинальному паспортному значению, а радиатор обеспечивает качественный теплоотвод. Такие лампочки прослужат намного дольше дешёвых китайских аналогов, тем самым доказывая преимущество светодиодов на деле.

Читайте так же

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Устройство LED-лампы

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Лампа светодиодная на 220 вольт

Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

Драйвер LED-лампы

Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

Сегодня светодиодные лампы есть едва ли не в каждом доме. Но к сожалению, эти осветительные приборы нередко выходят из строя задолго до положенного им срока, и причин тому множество. Выбрасывать? Не стоит, можно произвести ремонт. Сегодня мы разберем до винтика несколько таких устройств, посмотрим, что у них внутри, и попробуем провести ремонт светодиодной лампы на 220 В своими руками.

Устройство LED-лампы

Прежде чем взяться за практический ремонт, разберемся в работе светодиодной лампы на 220 В теоретически.

Любая светодиодная лампочка (СЛ) — готовый светодиодный светильник, который состоит из набора светодиодов, размещенных на плате определенной, снабженной радиатором для отвода от диодов тепла конфигурации. Нередко роль радиатора выполняет металлический корпус лампы.

Диоды, соединенные последовательно, питает драйвер – источник тока. В бюджетных устройствах ток через светодиоды не стабилизируется и напрямую зависит от колебаний сетевого напряжения. В более дорогих лампах ток через полупроводники стабилизирован на заданном уровне. Второй вариант, конечно, намного надежнее первого, но стоит такая лампа несколько дороже, а ремонт ее сложнее.

Все это устройство помещается в корпус той или иной конструкции, который снабжается цоколем для подключения к сети 220 В и защитным колпачком, одновременно играющим роль светорассеивателя.

Конструкция светодиодной лампы на 220 В

На лампе, изображенной выше, роль теплоотвода играет часть корпуса, выполненная из ребристого металла. В некоторых конструкциях ламп корпус может быть пластиковым, а радиатор располагается внутри него.


В этих лампочках радиатор расположен внутри пластикового корпуса, оснащенного вентиляционными отверстиями

Схемы драйверов и их принцип работы

Чтобы провести успешный ремонт, необходимо четко представлять, как лампа работает. Одним из основных узлов любой светодиодной лампы является драйвер. Схем драйверов для светодиодных ламп на 220 В существует множество, но условно их можно разделить на 3 типа:

  1. Со стабилизацией тока.
  2. Со стабилизацией напряжения.
  3. Без стабилизации.

Только устройства первого типа, по своей сути, являются драйверами. Они ограничивают ток через светодиоды. Второй тип лучше назвать блоком питания для светодиодной ленты. Третий вообще как-то назвать сложно, но его ремонт, как я указывал выше, самый простой. Рассмотрим схемы ламп на драйверах каждого типа.

Драйвер со стабилизацией тока

Драйвер лампы, схему которой ты видишь ниже, собран на интегральном стабилизаторе тока SM2082D. Несмотря на кажущуюся простоту он является полноценным и качественным, да и ремонт его несложен.


Схема лампы LED-А60 на полноценном драйвере

Сетевое напряжение через предохранитель F подается на диодный мост VD1-VD4, а затем, уже выпрямленное, на сглаживающий конденсатор С1. Полученное таким образом постоянное напряжение поступает на светодиоды лампы HL1-HL14, включенные последовательно, и вывод 2 микросхемы DA1.

С первого же вывода этой микросхемы на светодиоды поступает напряжение, стабилизированное по току. Величина тока зависит от номинала резистора R2. Резистор R1 довольно большой величины, шунтирующий конденсатор, в процессе работы схемы не участвует. Он нужен для того, чтобы быстро разрядить конденсатор, когда ты выкрутишь лампочку. В противном случае, взявшись за цоколь, ты рискуешь получить серьезный удар током, поскольку С1 останется заряженным до напряжения 300 В.

Драйвер со стабилизацией напряжения

Эта схема, в принципе, тоже довольно качественная, но подключать ее к светодиодам нужно несколько иначе. Как я уже говорил выше, такой драйвер правильнее было бы назвать блоком питания, поскольку он стабилизирует не ток, а напряжение.


Схема блока питания для светодиодной лампы

Здесь сетевое напряжение сначала поступает на балластный конденсатор С1, снижающий его до величины примерно 20 В, а затем уже на диодный мост VD1-VD4. Далее выпрямленное напряжение сглаживается конденсатором С2 и подается на интегральный стабилизатор напряжения. Снова сглаживается (С3) и через токоограничивающий резистор R2 питает цепочку светодиодов, включенных последовательно. Таким образом, даже при колебаниях сетевого напряжения ток через светодиоды останется постоянным.

Отличие этой схемы от предыдущей как раз в данном токоограничивающем резисторе. По сути, это с балластным блоком питания.

Драйвер без стабилизации

Драйвер, собранный по этой схеме, — чудо китайской схемотехники. Тем не менее, если в сети напряжение нормальной величины и не сильно скачет, он работает. Устройство собрано по простейшей схеме и не стабилизирует ни ток, ни напряжение. Оно просто понижает его (напряжение) до примерной нужной величины и выпрямляет.


Простейший драйвер светодиодной лампы 220 В

На этой схеме ты видишь уже знакомый тебе гасящий (балластный) конденсатор, зашунтированный для безопасности резистором. Далее напряжение поступает на выпрямительный мост, сглаживается конденсатором обидно малой емкости – всего 10 мкФ – и через токоограничивающий резистор поступает на цепочку светодиодов.

Что можно сказать о таком «драйвере»? Поскольку он ничего не стабилизирует, напряжение на светодиодах и, соответственно, ток через них напрямую зависят от входного напряжения. Если оно завышено, то лампа быстро сгорит. Если «скачет», то будет мигать и лампочка.

Такое решение обычно используется в бюджетных лампах китайских производителей. Назвать его удачным, конечно, сложно, но оно встречается довольно часто и при нормальном напряжении в сети может работать достаточно долго. Кроме того, такие схемы легко поддаются ремонту.

Причины выхода из строя

Почему вообще сгорают светодиодные лампы, если, как заявляют производители светодиодов, ресурс светоизлучающих полупроводников составляет минимум 15-20 тысяч часов? Практически все драйверы не имеют механических элементов и контактов, значит, у них наработка на отказ должна быть не меньше. Но лампы горят, порой не выработав даже свой гарантийный срок, и это факт. Причин поломки лампочки может быть несколько:

  • Производственный брак . Увы, от этого никто не застрахован. Особенно, если производители комплектующих и светодиодов – наши китайские братья, работающие в гараже и на коленках.
  • Неправильная эксплуатация . К примеру, плохая вентиляция в закрытом светильнике. В таких источниках света лампа перегревается, и тут уж выйти из строя может все что угодно – от драйвера до светодиодов. Сюда же можно отнести пыль, влагу, «искрящий» выключатель, выключатель с подсветкой и т. п.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Если в твоем выключателе стоит подсветка, то это верный путь к быстрой гибели светодиодной лампы. Либо снимай подсветку, либо вкрути в один из рожков люстры обычную лампочку накаливания любой, даже самой малой мощности.


Такая подсветка выключателя удобна, но вызывает «подмигивание» светодиодной лампы и сокращает срок ее службы в десятки раз
  • Плохое питание . Если напряжение постоянно скачет или оно ненормально завышено, тут даже самый качественный драйвер может «потерять терпение». Сюда же отнесем постоянные выбросы напряжения, к примеру, при пуске мощных моторов или сварочного оборудования, и импульсные помехи.

В этой китайской лампе «драйвер» примостился прямо на плате со светодиодами, а радиатором тут даже не пахнет

Пример ремонта светодиодной лампочки

Если лампа все же вышла из строя, не стоит ее сразу выбрасывать. Во-первых, вполне вероятно, что ее можно оживить, произведя ремонт своими руками. Во-вторых, даже если ремонт не будет успешным, оставшиеся «в живых» детали могут пригодиться для ремонта другой лампы.

Браться за ремонт лампочки нужно только в том случае, если ты уверен, что неисправна именно она, а не розетка, патрон или проводка. Проверить это несложно: достаточно заменить лампу заведомо исправной и убедиться, что она горит.

Что нам понадобится для ремонта

Прежде чем взяться за ремонт, необходимо собрать все необходимое для этого. Для работы тебе понадобятся:

  • паяльник небольшой мощности;
  • пинцет;
  • острый нож;
  • растворитель (по необходимости);

Мультиметр подойдет любой — стрелочный или цифровой, главное, он обязательно должен иметь режим прозвонки диодов.

Этот прибор подойдет: у него есть режим проверки диодов

Как разобрать светодиодную лампу

Здесь нужно сразу оговориться: если у тебя вышла из строя филаментная лампа, то за ремонт браться не стоит. Прибор имеет герметичную стеклянную колбу, заполненную инертным газом. Провести ремонт такого устройства просто невозможно.

Такую лампу починить не удастся

Итак, если все готово, а лампа у тебя не филаментная, то можно приступать к ремонту led светильника. Прежде всего, лампочку необходимо разобрать. Для этого нужно снять светорассеивающий колпачок. Обычно сделать это несложно. Существует три способа крепления рассеивателя к корпусу прибора:

  1. При помощи резьбового соединения.
  2. С помощью защелок.
  3. При помощи герметика.

Разобрать лампу с резьбовым соединением проще всего. Для этого достаточно просто выкрутить стекло из корпуса, не прилагая слишком больших усилий.


У этой лампы светорассеиватель можно просто выкрутить

Разобрать лампу с защелками ненамного сложнее. Единственно, необходимо определить местоположение защелок, поскольку визуально их не видно. Аккуратно просунь кончик ножа между рассеивателем и корпусом и одновременно попытайся снять колпачок. Имея определенное терпение и аккуратно двигаясь ножом по окружности, ты легко найдешь защелки.


Разборка лампы с колпачком на защелках

Если светорассеиватель посажен на герметик, то тут с ремонтом придется повозиться чуть дольше. Процарапай тонким (лучше канцелярским) ножом стык между колпачком и корпусом. Делай это под углом по направлению к цоколю и как можно глубже, но без фанатизма. Теперь попытайся выкрутить колпачок, как если бы он был на резьбе. Если герметик некачественный или его мало, то светорассеивающий колпачок легко снимется.


Разборка светодиодной лампочки на герметике при помощи канцелярского ножа

Не получилось? Есть еще два варианта ремонта. Возьми шприц и залей в образовавшуюся щель растворитель для красок (не ацетон!). Через некоторое время герметик станет мягким, и колпачок легко снимется.

Второй способ ремонта заключается в прогреве стыка техническим феном. Делать это нужно очень аккуратно, чтобы не расплавить пластик корпуса лампы, а стекло рассеивателя не лопнуло. Разогревшийся герметик станет мягким, и рассеиватель легко снимется.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно. Разбирая лампочку, имей терпение и будь осторожен: корпус прибора и колпачок легко сломать. В этом случае о ремонте, скорее всего, придется забыть.


Результат неаккуратной разборки, когда ремонтировать уже смысла не имеет

Осталось открутить крепежные винты, удерживающие плату со светодиодами, снять ее и вытащить драйвер. Разборку можно считать оконченной, пора переходить к ремонту.

Выкрути два винта, удерживающие плату со светодиодами

Если винтов нет, то, скорее всего, плата крепится герметиком. Прорежь его по окружности платы, а саму плату аккуратно поддень ножом.


Эта плата крепится к корпусу герметиком

Поиск неисправности

Лампа разобрана, и до всех ее компонентов можно добраться. Отлично. Начни ремонт с визуального осмотра всех деталей драйвера. Все элементы должны иметь «здоровый» вид: не потемневшие, не вздувшиеся и не обгоревшие.


На левой картинке вышел из строя электролитический сглаживающий конденсатор, на правой — гасящий

Внимательно осмотри места паек: они должны быть качественными, без трещин и дырок в припое.


Проблема этой лампы в «холодной» пайке – элемент имеет плохой контакт с платой

Если визуально с драйвером все в порядке, осмотри плату со светодиодами. Обычно (но не всегда) сгоревший светодиод видно: он или прогорает, или выгорает полностью.


Слева сгоревший кристалл прожег люминофор, справа диод выгорел полностью

Поскольку все светоизлучающие диоды соединены последовательно, то если сгорит только один светодиод, перестанут светиться и остальные.

Вполне понятно, что если обнаружены проблемы, то их нужно устранить: сгоревшие детали заменить на аналогичные, а подозрительные пайки пропаять хорошо прогретым паяльником с большим количеством флюса. Как заменить светодиод, ты можешь прочитать в следующем разделе статьи. Нашел вышеперечисленные проблемы и устранил? Включай лампу, и, надеюсь, ремонт закончен.

Если визуально все в порядке, для дальнейшего ремонта пришла пора воспользоваться тестером. Сначала займемся платой со светодиодами, так как проверить их проще, а вероятность отказа этого узла выше. Включаем мультиметр на проверку диодов и прозваниваем каждый светодиод в обоих направлениях. В одном из направлений прибор покажет большое сопротивление, в другом диод слабо засветится.


Исправный диод в одном из положений щупов мультиметра засветится

Не получается прозвонить ни один диод? Возможно, этому мешает драйвер. Отпаяй один из проводов, идущих с драйвера на светодиодную плату, и повтори прозвонку.


Если проверке диодов мешает драйвер, его можно отключить, отпаяв от модуля один из проводов питания

Если какой-то из диодов ведет себя не так, как остальные, его нужно заменить на однотипный. Если все в порядке, проверку светодиодного модуля можно закончить – он исправен. Пора перейти к ремонту драйвера.

Ремонт драйвера

Прежде всего прозвони предохранитель, если он есть. Прибор должен показать нулевое сопротивление. Сделать это можно, не выпаивая предохранитель из платы. Прибор показал бесконечно большое сопротивление? Замени предохранитель и включи лампу в сеть для проверки. Светится? Ремонт окончен. Если же предохранитель в порядке, продолжаем ремонт. . Как это сделать, ты можешь подробно узнать .

Диодный мост рабочий? Тогда выпаивай сглаживающий электролитический конденсатор и прозвони его. Если конденсатор исправен, то в начальный момент прозвонки мультиметр покажет маленькое сопротивление, которое будет на глазах расти, пока не уйдет в бесконечность.


Проверка электролитического конденсатора мультиметром

Если драйвер простой, как часто случается, то все эти манипуляции обязательно приведут к успеху и окончанию ремонта. Если драйвер сложнее, то все, что ты можешь сделать, это прозвонить остальные электролитические конденсаторы и диоды. Конденсаторы легче выпаять полностью, у диода можно выпаять лишь один вывод. Чтобы он потерял контакт с платой, прибор достаточно приподнять иголкой или пинцетом.

Если и тут все в порядке, то, увы, для дальнейшего более сложного ремонта придется воспользоваться помощью квалифицированного электронщика.

Замена светодиодов

Главный недостаток SMD элементов – возникновение некоторых проблем с ремонтом оборудования, имеющего их в своем составе. Демонтировать такие элементы, особенно многовыводные, бывает весьма проблематично. Но если прибор двухвыводный, то выпаять его можно при помощи паяльной станции, и тогда ремонт серьезно упрощается. Возьми двойной паяльник, который идет в составе паяльной станции, разогрей одновременно оба вывода диода и этим же паяльником, как пинцетом, сними элемент с платы.


Демонтаж SMD конденсатора при помощи двойного паяльника

Если в твоей паяльной станции только один паяльник (что бывает чаще всего), то есть еще один вариант. Можно использовать идущий в составе паяльной станции фен. Обдувай неисправный диод феном и одновременно пытайся сдвинуть его с места иголкой или тонким пинцетом. Как только припой расплавится, светодиод легко снимется с платы.


Демонтаж светодиода феном

Для ремонта светодиодных ламп вместо паяльного фена можно использовать технический, но диаметр его сопла должен быть минимальным. В противном случае ты будешь греть алюминиевую подложку и либо вообще ничего не выпаяешь (мощности фена не хватит), либо у тебя послетают со своих мест все светодиоды лампы, либо поотваливаются токопроводящие дорожки. В таком случае ремонт серьезно усложнится, если вообще будет возможен.

Как заменить в лампе светодиоды, если нет фена или паяльной станции

Конечно, далеко не у всех для подобного ремонта есть паяльная станция (у меня, к примеру, дома ее нет). В таком случае для ремонта можно воспользоваться обычным паяльником, немного доработав его жало. Просто накрути медный обмоточный провод диаметром 1-2 мм на жало, а концы провода заточи и залуди. Чем не паяльная станция для ремонта и замены SMD деталей?


Демонтаж SMD светодиода с помощью обычного паяльника

Осталось заменить светодиод, и ремонт можно закончить. Сделать это можно паяльником с тонким жалом или обычным, но доработанным для выпайки (см. фото выше). Перед пайкой удали с контактных площадок лишний припой и нанеси на них флюс. Теперь прикладывай новый светодиод на место, соблюдая полярность, удерживай тонким пинцетом и паяй. Имей в виду, что впаянный светодиод должен быть точно того же типа, что и сгоревший. Иначе такого ремонта ненадолго хватит.

Техника безопасности при ремонте светодиодных лампочек на 220 В

Поскольку мы проводим ремонт прибора, работающего от сети, то без техники безопасности никуда. Светодиодные лампы имеют бестрансформаторное питание, практически все элементы схемы во время работы прибора, включая светодиоды, находятся под опасным для жизни напряжением. Поэтому соблюдай следующие меры предосторожности:

  • Все перепайки и измерения во время ремонта проводи только в отключенной лампе.
  • Даже если конденсаторы зашунтированы разрядными резисторами, после выключения лампы разряди все конденсаторы вручную. Для этого достаточно на секунду закоротить выводы конденсатора любым металлическим инструментом с диэлектрической ручкой.
  • Во время включения прибора после ремонта береги глаза. Если что-то пойдет не так, любой из элементов может взорваться. Лучше отвернись, включи и поворачивайся.
  • Не оставляй без присмотра включенный паяльник и не клади его во время перерывов в ремонте на горючие предметы. 260 градусов – это относительно немного, но пожар устроить хватит.

На этом, пожалуй, можно закончить. Теперь ты знаешь, как устроена светодиодная лампа и как она работает. А при необходимости сможешь самостоятельно произвести ее ремонт.

Видео

Благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов , все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.


Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя . К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

О филаментных лампах

По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.


Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

Примеры ремонта светодиодных ламп

Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать предельную осторожность. Прикосновение не защищенным участком тела человека к оголенным участкам схемы подключенной к электрической сети может нанести серьезный урон здоровью, вплоть до остановки сердца.

Ремонт светодиодной лампы
ASD LED-A60, 11 Вт на микросхеме SM2082

В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.


Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.


После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.


Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.


С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.


Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности небыло, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.


После сборки светодиодная лампа стабильно излучала свет, не смотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

Электрическая схема драйвера
светодиодной лампы ASD LED-A60 на микросхеме SM2082

Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.


Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

Ремонт светодиодной лампы
ASD LED-A60, 11 Вт, 220 В, E27

В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

При включении лампа на мгновенье зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.


Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.


Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.


В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.


Напряжение 220 В с цоколя лампы через резистор - предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.


На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.


На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.


Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.


В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

В наличии небыло светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстро сохнущим супер клеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность - 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

Ремонт светодиодной лампы
LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.


Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

Светорассеивающее стекло снялось легко, приклеено небыло. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.


Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в оной из выше описанных ламп.

Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.


Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

Поиск неисправных светодиодов

После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером , включенным в режим измерения сопротивления.

Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

Другие неисправности светодиодных ламп

Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодных мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

Пайка SMD светодиодов

Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку , сделанную из медной проволоки, то задача легко решается.

Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

Ремонт светодиодной лампы серии "LL-CORN" (лампа-кукуруза)
E27 4,6 Вт 36x5050SMD

Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от выше описанной лампы, поэтому и технология ремонта другая.


Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

Проверка светодиодов LED лампы-кукурузы не отличается от выше описанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.


Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.


Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 - 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

Ремонт светодиодной лампы "LL-CORN" (лампа-кукуруза)
E27 12 Вт 80x5050SMD

При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.


Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.


Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.


После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.


В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросав и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-5

Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.


В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.


Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.


После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.


Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу с лева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-3

Эта светодиодная лампа по внешнему виду очень похожа на "LLB" LR-EW5N-5, но конструкция ее несколько отличается.

Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

На алюминиевой печатной плате установлено три девяти кристальных сверх ярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы "LLB" LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.


Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.


Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.


Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти. Зато изучил ее устройство.

Ремонт светодиодной лампы серии "LL" GU10-3W

Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.


После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.


Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.


Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становиться жидким.

После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

Светодиодная лампа начала мигать как стробоскоп

Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.


После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

Онлайн калькуляторы для определения номинала резисторов
по цветовой маркировке

При ремонте светодиодных ламп возникает необходимость в определении номинала резистора. По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса колец разного цвета. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5 колец.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows