Быстрый метод масштабирования цветных изображений. Урок: масштабирование изображения

Быстрый метод масштабирования цветных изображений. Урок: масштабирование изображения

Для увеличения или уменьшения размера изображения Фотошоп использует метод Интерполяции. Так, например, при увеличении изображения, Фотошоп создает дополнительные пиксели на основе значений соседних. Грубо говоря, если один пиксель черный, а другой белый, то Фотошоп вычислит среднее значение и создаст новый пиксель серого цвета. Некоторые виды интерполяции быстрые и некачественные, другие более сложные, но с помощью них достигаются хорошие результаты.

Для начала пойдем в главное меню Изображение - Размер изображения (Image - Image Size) или Alt+Ctrl+I .

Если вы кликните по стрелочке около параметра Ресамплинг (Resample Image) , то в выплывающем окне появится несколько вариантов интерполяции:

  • Автоматически (Automatic) . Приложение Photoshop выбирает метод ресамплинга на основе типа документа и увеличения либо уменьшения его масштаба.
  • Сохранить детали (с увеличением) (Preserve details (enlargement)) . Если выбран этот метод, становится доступным ползунок Снижение шума для сглаживания шума при масштабировании изображения.
  • Сохранение деталей 2.0 (Preserve Details 2.0) . Этот алгоритм даёт очень даже интересный результат увеличения картинки. Конечно, детализация подробнее не становится, но та, что есть увеличивается довольно сильно не теряя чёткости.
  • . Хороший метод для увеличения изображений на основе бикубической интерполяции, разработанный специально для получения более гладких результатов.
  • Бикубическая (с уменьшением) (Bicubic Sharper (reduction)) . Хороший метод для уменьшения размера изображения на основе бикубической интерполяции с повышенной резкостью. Этот метод позволяет сохранить детали изображения, подвергнутого ресамплингу. Если интерполяция «Бикубическая, c уменьшением» делает слишком резкими некоторые области изображения, попробуйте воспользоваться бикубической интерполяцией.
  • Бикубическая (плавные градиенты) (Bicubic (smooth gradients)) . Более медленный, но и более точный метод, основанный на анализе значений цвета окружающих пикселей. За счет использования более сложных вычислений бикубическая интерполяция дает более плавные цветовые переходы, чем интерполяция по соседним пикселам или билинейная интерполяция.
  • По соседним пикселам (четкие края) (Nearest Neighbor (hard edges)) . Быстрый, но менее точный метод, который повторяет пиксели изображения. Этот метод сохраняет четкие края и позволяет создать файл уменьшенного размера в иллюстрациях, содержащих несглаженные края. Однако этот метод может создать зубчатые края, которые станут заметными при искажении или масштабировании изображения, или проведении множества операций с выделением.
  • Билинейная (Bilinear) . Этот метод добавляет новые пиксели, рассчитывая среднее значение цвета окружающих пикселей. Он дает результат среднего качества.

Пример использования Бикубическая (с увеличением) (Bicubic Smoother (enlargement)) :

Есть фото, размеры 600 х 450 пикселей разрешение 72 dpi

Нам нужно его увеличить. Открывает окно Размер изображения (Image Size) и выбираем Бикубическая (с увеличением) (Bicubic Smoother (enlargement)) , единицы измерение - проценты.

Размеры документа сразу установятся на значения 100%. Далее будем постепенно увеличивать изображение. Измените значение 100% на 110%. Когда вы измените ширину, высота автоматически подгонится сама.

Теперь его размеры уже 660 х 495 пикселей. Повторяя данные действия можно добиться хороших результатов. Конечно, идеальной четкости нам добиться будет достаточно сложно, так как фото было маленькое и низкого разрешения. Но посмотрите, какие изменения произошли в пикселях.

Насколько большими мы можем делать фотографии благодаря методу интерполяции? Все зависит от качества фотографии, как оно было сделано и для каких целей вы его увеличиваете. Лучший ответ: возьмите и проверьте сами.

До встречи в следующем уроке!

Почему изображение, масштабированное с бикубической интерполяцией, выглядит не как в Фотошопе. Почему одна программа ресайзит быстро, а другая - нет, хотя результат одинаковый. Какой метод ресайза лучше для увеличения, а какой для уменьшения. Что делают фильтры и чем они отличаются.

Вообще, это было вступлением к другой статье, но оно затянулось и вылилось в отдельный материал.

Этот человек сидит среди ромашек, чтобы привлечь ваше внимание к статье.

Для наглядного сравнения я буду использовать изображения одинакового разрешения 1920×1280 (одно , второе), которые буду приводить к размерам 330×220, 1067×667 и 4800×3200. Под иллюстрациями будет написано, сколько миллисекунд занял ресайз в то или иное разрешение. Цифры приведены лишь для понимания сложности алгоритма, поэтому конкретное железо или ПО, на котором они получены, не так важно.

Ближайший сосед (Nearest neighbor)

Это самый примитивный и быстрый метод. Для каждого пикселя конечного изображения выбирается один пиксель исходного, наиболее близкий к его положению с учетом масштабирования. Такой метод дает пикселизированное изображение при увеличении и сильно зернистое изображение при уменьшении.

Вообще, качество и производительность любого метода уменьшения можно оценить по отношению количества пикселей, участвовавших в формировании конечного изображения, к числу пикселей в исходном изображении. Чем больше это отношение, тем скорее всего алгоритм качественнее и медленнее. Отношение, равное одному, означает что как минимум каждый пиксель исходного изображения сделал свой вклад в конечное. Но для продвинутых методов оно может быть и больше одного. Дак вот, если например мы уменьшаем изображение методом ближайшего соседа в 3 раза по каждой стороне, то это соотношение равно 1/9. Т.е. большая часть исходных пикселей никак не учитывается.




1920×1280 → 330×220 = 0,12 ms
1920×1280 → 1067×667 = 1,86 ms

Теоретическая скорость работы зависит только от размеров конечного изображения. На практике при уменьшении свой вклад вносят промахи кеша процессора: чем меньше масштаб, тем меньше данных используется из каждой загруженной в кеш линейки.

Метод осознанно применяется для уменьшения крайне редко, т.к. дает очень плохое качество, хотя и может быть полезен при увеличении. Из-за скорости и простоты реализации он есть во всех библиотеках и приложениях, работающих с графикой.

Аффинные преобразования (Affine transformations)

Аффинные преобразования - общий метод для искажения изображений. Они позволяют за одну операцию повернуть, растянуть и отразить изображение. Поэтому во многих приложениях и библиотеках, реализующих метод аффинных преобразований, функция изменения изображений является просто оберткой, рассчитывающей коэффициенты для преобразования.

Принцип действия заключается в том, что для каждой точки конечного изображения берется фиксированный набор точек исходного и интерполируется в соответствии с их взаимным положением и выбранным фильтром. Количество точек тоже зависит от фильтра. Для билинейной интерполяции берется 2x2 исходных пикселя, для бикубической 4x4. Такой метод дает гладкое изображение при увеличении, но при уменьшении результат очень похож на ближайшего соседа. Смотрите сами: теоретически, при бикубическом фильтре и уменьшении в 3 раза отношение обработанных пикселей к исходным равно 4² / 3² = 1,78. На практике результат значительно хуже т.к. в существующих реализациях окно фильтра и функция интерполяции не масштабируются в соответствии с масштабом изображения, и пиксели ближе к краю окна берутся с отрицательными коэффициентами (в соответствии с функцией), т.е. не вносят полезный вклад в конечное изображение. В результате изображение, уменьшенное с бикубическим фильтром, отличается от изображения, уменьшенного с билинейным, только тем, что оно еще более четкое. Ну а для билинейного фильтра и уменьшения в три раза отношение обработанных пикселей к исходным равно 2² / 3² = 0.44, что принципиально не отличается от ближайшего соседа. Фактически, аффинные преобразования нельзя использовать для уменьшения более чем в 2 раза. И даже при уменьшении до двух раз они дают заметные эффекты лесенки для линий.

Теоретически, должны быть реализации именно аффинных преобразований, масштабирующие окно фильтра и сам фильтр в соответствии с заданными искажениями, но в популярных библиотеках с открытым исходным кодом я таких не встречал.




1920×1280 → 330×220 = 6.13 ms
1920×1280 → 1067×667 = 17.7 ms
1920×1280 → 4800×3200 = 869 ms

Время работы заметно больше, чем у ближайшего соседа, и зависит от размера конечного изображения и размера окна выбранного фильтра. От промахов кеша уже практически не зависит, т.к. исходные пиксели используются как минимум по двое.

Мое скромное мнение, что использование этого способа для произвольного уменьшения изображений попросту является багом , потому что результат получается очень плохой и похож на ближайшего соседа, а ресурсов на этот метод нужно значительно больше. Тем не менее, этот метод нашел широкое применение в программах и библиотеках. Самое удивительное, что этот способ используется во всех браузерах для метода канвы drawImage() (наглядный пример), хотя для простого отображения картинок в элементе используются более аккуратные методы (кроме IE, в нем для обоих случаев используются аффинные преобразования). Помимо этого, такой метод используется в OpenCV, текущей версии питоновской библиотеки Pillow (об этом я надеюсь написать отдельно), в Paint.NET.

Кроме того, именно этот метод используется видеокартами для отрисовки трехмерных сцен. Но разница в том, что видеокарты для каждой текстуры заранее подготавливают набор уменьшенных версий (mip-уровней), и для окончательной отрисовки выбирается уровень с таким разрешением, чтобы уменьшение текстуры было не более двух раз. Кроме этого, для устранения резкого скачка при смене mip-уровня (когда текстурированный объект приближается или отдаляется), используется линейная интерполяция между соседними mip-уровнями (это уже трилинейная фильтрация). Таким образом для отрисовки каждого пикселя трехмерного объекта нужно интерполировать между 2³ пикселями. Это дает приемлемый для быстро движущейся картинки результат за время, линейное относительно конечного разрешения.

Суперсемплинг (Supersampling)

С помощью этого метода создаются те самые mip-уровни, с помощью него (если сильно упростить) работает полноэкранное сглаживание в играх. Его суть в разбиении исходного изображения по сетке пикселей конечного и складывании всех исходных пикселей, приходящихся на каждый пиксель конечного в соответствии с площадью, попавшей под конечный пиксель. При использовании этого метода для увеличения, на каждый пиксель конечного изображения приходится ровно один пиксель исходного. Поэтому результат для увеличения равен ближайшему соседу.

Можно выделить два подвида этого метода: с округлением границ пикселей до ближайшего целого числа пикселей и без. В первом случае алгоритм становится малопригодным для масштабирования меньше чем в 3 раза, потому что на какой-нибудь один конечный пиксель может приходиться один исходный, а на соседний - четыре (2x2), что приводит к диспропорции на локальном уровне. В то же время алгоритм с округлением очевидно можно использовать в случаях, когда размер исходного изображения кратен размеру конечного, или масштаб уменьшения достаточно мал (версии разрешением 330×220 почти не отличаются). Отношение обработанных пикселей к исходным при округлении границ всегда равно единице.




1920×1280 → 330×220 = 7 ms
1920×1280 → 1067×667 = 15 ms
1920×1280 → 4800×3200 = 22,5 ms

Подвид без округления дает отличное качество при уменьшении на любом масштабе, а при увеличении дает странный эффект, когда большая часть исходного пикселя на конечном изображении выглядит однородной, но на краях видно переход. Отношение обработанных пикселей к исходным без округления границ может быть от единицы до четырех, потому что каждый исходный пиксель вносит вклад либо в один конечный, либо в два соседних, либо в четыре соседних пикселя.




1920×1280 → 330×220 = 19 ms
1920×1280 → 1067×667 = 45 ms
1920×1280 → 4800×3200 = 112 ms

Производительность этого метода для уменьшения ниже, чем у аффинных преобразований, потому что в расчете конечного изображения участвуют все пиксели исходного. Версия с округлением до ближайших границ обычно быстрее в несколько раз. Также возможно создать отдельные версии для масштабирования в фиксированное количество раз (например, уменьшение в 2 раза), которые будут еще быстрее.

Данный метод используется в функции gdImageCopyResampled() библиотеки GD, входящей в состав PHP, есть в OpenCV (флаг INTER_AREA), Intel IPP, AMD Framewave. Примерно по такому же принципу работает libjpeg, когда открывает изображения в уменьшенном в несколько раз виде. Последнее позволяет многим приложениям открывать изображения JPEG заранее уменьшенными в несколько раз без особых накладных расходов (на практике libjpeg открывает уменьшенные изображения даже немного быстрее полноразмерных), а затем применять другие методы для ресайза до точных размеров. Например, если нужно отресайзить JPEG разрешением 1920×1280 в разрешение 330×220, можно открыть оригинальное изображение в разрешении 480×320, а затем уменьшить его до нужных 330×220.

Свертки (Convolution)

Этот метод похож на аффинные преобразования тем, что используются фильтры, но имеет не фиксированное окно, а окно, пропорциональное масштабу. Например, если размер окна фильтра равен 6, а размер изображения уменьшается в 2,5 раза, то в формировании каждого пикселя конечного изображения принимает участие (2,5 * 6)² = 225 пикселей, что гораздо больше, чем в случае суперсемплинга (от 9 до 16). К счастью, свертки можно считать в 2 прохода, сначала в одну сторону, потом в другую, поэтому алгоритмическая сложность расчета каждого пикселя равна не 225, а всего (2,5 * 6) * 2 = 30. Вклад каждого исходного пикселя в конечный как раз определяется фильтром. Отношение обработанных пикселей к исходным целиком определяется размером окна фильтра и равно его квадрату. Т.е. для билинейного фильтра это отношение будет 4, для бикубического 16, для Ланцоша 36. Алгоритм прекрасно работает как для уменьшения, так и для увеличения.




1920×1280 → 330×220 = 76 ms
1920×1280 → 1067×667 = 160 ms
1920×1280 → 4800×3200 = 1540 ms

Скорость работы этого метода зависит от всех параметров: размеров исходного изображения, размера конечного изображения, размера окна фильтра.

Именно этот метод реализован в ImageMagick, GIMP, в текущей версии Pillow с флагом ANTIALIAS.

Одно из преимуществ этого метода в том, что фильтры могут задаваться отдельной функцией, никак не привязанной к реализации метода. При этом функция самого фильтра может быть достаточно сложной без особой потери производительности, потому что коэффициенты для всех пикселей в одном столбце и для всех пикселей в одной строке считаются только один раз. Т.е. сама функция фильтра вызывается только (m + n) * w раз, где m и n - размеры конечного изображения, а w - размер окна фильтра. И наклепать этих функций можно множество, было бы математическое обоснование. В ImageMagick, например, их 15. Вот как выглядят самые популярные:

Билинейный фильтр (bilinear или triangle в ImageMagick)


Бикубический фильтр (bicubic , catrom в ImageMagick)


Фильтр Ланцоша (Lanczos)

Примечательно, что некоторые фильтры имеют зоны отрицательных коэффициентов (как например бикубический фильтр или фильтр Ланцоша). Это нужно для придания переходам на конечном изображении резкости, которая была на исходном.

Быстрый метод масштабирования цветных изображений.

Аннотация.

Масштабирование изображений – важный этап любой цепочки обработки изображений, содержащей сенсор камеры и дисплей. Хотя разрешения современных мобильных дисплеев с развитием технологий увеличились до приемлемого для отображения качественных фотографий уровня, разрешения самих фотографий намного превосходит разрешения экранов мобильных устройств. В этой статье предложен алгоритм быстрого и качественного масштабирования изображений, пригодный для реализации на мобильных устройствах. Ниже будет приведено подробное описание алгоритма и приведены результаты его работы с реальными фотографиями.

1) Введение.

Камеры разрешением 5 МПикс и более стали теперь уже обычным явлением. Технологии не стоят на месте, разрешения камер растут, но разрешения дисплеев мобильных устройств по понятным причинам не могут быть настолько же большими, следовательно, полученное камерой изображение должно быть вписано в меньший по разрешению экран, а это предполагает применение алгоритмов децимации. Бывают также случаи, когда размер изображения меньше размера экрана, или же требуется увеличить рисунок, чтобы рассмотреть интересующие детали. В таких случаях требуется увеличение изображения, а это можно осуществить интерполяционными методами. Известные методы децимации и интерполяции имеют низкую сложность и могут быть эффективно реализованы, однако очертания объектов изображения пострадают от эффекта зубчатости краёв и появившихся артефактов, поэтому хотелось бы получить алгоритм качественного масштабирования без нежелательных артефактов, неровных краёв, чрезмерного сглаживания и пикселизации.

К сожалению, в мобильных операционных системах память и вычислительные ресурсы, необходимые для обработки изображений с наименьшими потерями качества, ограничены, большие изображения требуют большого объёма памяти и вычислений, количество которых зависит от числа пикселей изображения линейно (а в некоторых случаях даже экспоненциально).

Преобразование сигналов – важный раздел теории обработки сигналов, рассмотренный в литературе , где представлено несколько возможностей увеличения и уменьшения изображений . При уменьшении несколько пикселей источника соответствуют одному пикселю приёмника, при увеличении всё наоборот. В простейшем алгоритме уменьшения масштаба один из нескольких пикселей источника «претендует» стать прообразом пикселя приёмника. Данный подход называется методом «ближайшего соседа», недостаток его в выраженном эффекте зубчатых краёв и артефактах, поэтому основные методы масштабирования используют фильтрацию и передискретизацию. «Уменьшенные» данные обычно получают как линейную комбинацию входных дискретных данных и некоторого ядра.

Иногда нас может интересовать не всё изображение целиком, а только некоторая его область. Увеличение этой области требует увеличения масштаба и панорамирования. Первое может быть осуществлено простейшим способом копирования пикселей, однако в результате получится изображение с блочными артефактами и пикселизацией. Несколько лучших результатов можно достичь более совершенными методами, использующими пространственную фильтрацию. Разные способы имеют разную сложность.

Из-за произвольности размеров источника и приёмника необходимы методы дробного масштабирования. К таким методам относится билинейная интерполяция. Пиксель приёмника вычисляется как взвешенное среднее смежных пикселей источника. Веса могут быть вычислены по простым формулам для любого масштаба. Данный способ – хороший компромисс между сложностью и качеством. Взвешенные средние значения используются и при децимации.

В данной статье представлен новый и эффективный с точки зрения вычислений алгоритм масштабирования изображений, усредняющий веса пикселей и обращающийся к данным предварительно заполненной таблицы. Он быстр и пригоден для мобильных устройств. Ниже будет дано подробное описание его работы.

2) Предлагаемые методы.

В этом разделе дано описание нового метода масштабирования изображений, пригодного для реализации на мобильных устройствах. Вычислительные процессы увеличения и уменьшения масштаба, а также панорамирования и обрезки границ изложены в подробной форме.

Алгоритм уменьшения масштаба. Предложенный алгоритм уменьшения изображений разработан так, чтобы избежать бесполезных повторяющихся вычислений, что положительно сказывается на скорости. Так как коэффициенты масштабирования по горизонтали и вертикали постоянны для каждой строки и каждого столбца изображения, все веса, индексы, значения начальных и конечных пикселей могут быть вычислены один раз и помещены в таблицу, а внутри цикла, проходящего по пикселям изображения и при самом масштабировании занесённые в таблицу веса и индексы считываются из неё вместо повторного перерасчёта.

За одну итерацию цикла алгоритм сканирует одну строку изображения. Как только обработка строки закончена, сканируется следующая строка. Для определённости опишем работу алгоритма по горизонтали, однако выбор направления непринципиален. Сначала вычисляются значения начального и конечного пикселей источника (см. рис. 1).

https://pandia.ru/text/78/197/images/image002_142.jpg" width="552" height="98">

Здесь input_image_size – размер источника, output_image_size – размер приёмника, panning – величина панорамирования, а zoom_factor определяет отношение размера источника к размеру приёмника. Panning – очень важная величина, которую следует учитывать в случаях, если изображение не помещается на экран полностью, а просматривается только некоторая «внутренность» границы, при этом её «внешность» обрезается, находясь за пределами экрана.

https://pandia.ru/text/78/197/images/image004_134.gif" width="461" height="264 src=">

Рис. 2. Значение пикселя уменьшенного изображения – взвешенное среднее пикселей источника, которые «принадлежат» области этого пикселя.

Теперь определим индикаторы (0, 0, 1, 0, …) и верхние индексы (1, 2, 3, …) так, как показано на рис. 2 и 3.

https://pandia.ru/text/78/197/images/image006_115.gif" width="506" height="227 src=">

Рис. 3. Верхние индексы и индикаторы.

Индикатор определяет, необходим ли пиксель для расчёта двух пикселей приёмника. Индикаторы считаются по следующей формуле:

https://pandia.ru/text/78/197/images/image008_94.gif" width="582" height="48 src=">

Следовательно, индикатор равен 1, если пиксель источника требуется для вычисления двух пикселей приёмника, и 0 в противном случае. При вычислении индикаторов верхний индекс увеличивается каждый раз, когда индикатор равен 1.

Далее алгоритм вычисляет 2 горизонтальных веса (в общей сложности требуется 4 весовых коэффициента на пиксель приёмника: 2 горизонтальных и 2 вертикальных) для каждого из верхних индексов, определённых на предыдущем шаг (см. рис 4).

https://pandia.ru/text/78/197/images/image010_85.gif" width="257" height="310 src=">

Рис. 4. Веса

Весовые коэффициенты пропорциональны площади пересечения пикселя источника с пикселем приёмника. Веса вычисляются так:

https://pandia.ru/text/78/197/images/image012_80.gif" width="552" height="223 src=">

Здесь 1 ≤ x end .

Weight1 считаем левым весом, weight2 – правым. Сумма левого и правого весов должна равняться 1. Заметим, что веса и индексы вычисляем в целых числах. Это сделано для упрощения вычислений и сокращения объёма необходимой памяти. В формуле, приведённой выше, использована 10-разрядная точность (множидля преобразования вещественных значений в целые.

Индикатор первого пикселя источника равен 0, когда он не лежит на границе с первым уменьшенный пикселем или в случае, когда пиксель источника «проецируется» только на один из пикселей приёмника. Если же «проекция» приходится на 2 пикселя или левые границы пикселей источника и приемника идут точно по границе изображения, то индикатор устанавливается равным 1.

Векторы index(x), weight1(x) и weight2(x) хранятся в таблице, что помогает избежать их повторного вычисления при переходе на следующую после текущей строку. Коэффициент масштабирования постоянен для каждой строки. Обращение к таблице значительно повышает быстродействие, и в предлагаемом алгоритме таблицы используются во всех удобных случаях.

Как только веса и индексы по направлению х вычислены, приступаем к вычислению величин по у, пользуясь вышеприведёнными формулами.

На заключительном этапе алгоритма выполняется собственно масштабирование – вычисление значений пикселей приёмника. Для этого берутся значения пикселей с начального по конечный, а из таблицы считываются веса и индексы. Ниже приведены формулы, по которым производится расчёт:

https://pandia.ru/text/78/197/images/image014_68.gif" width="559" height="98 src=">

Так как алгоритму требуются только пиксели с индикатором 1, то можно вычислять значения только одного или двух пикселей вместо четырёх. Тем самым нам удастся ускорить работу алгоритма, особенно в случае небольшого коэффициента масштабирования (большая часть индикаторов при таком раскладе равна 0).

Значения пикселей каждой строки приёмника получаются путём сложения значений пикселей источника со значениями выходных буферов в каждой итерации цикла (см. рис. 5).

https://pandia.ru/text/78/197/images/image016_57.gif" width="496" height="305 src=">

Рис. 5. Буферизация.

Один пиксель источника затрагивает до четырёх пикселей приёмника (A, B, C, D) в зависимости от значений indexX и indexY. Если indexX = 0 и indexY = 0, то само значение пикселя источника добавляется в буфер (пиксель А, рис. 5). При indexX = 1 и indexY = 0, пиксель В вычисляется как взвешенное среднее пикселей источника и добавляется в соответствующий буфер. Если indexX = 0, а indexY = 1, то пиксель С вычисляется как взвешенное среднее входных пикселей и добавляется во второй буфер. Ну а в случае, если indexX и indexY равны одновременно 1, вычисляется пиксель D и добавляется во второй буфер.

Как только алгоритм пройдёт целиком по строке изображения, значения первого буфера преобразуются в 8-битные целые числа (0…255) делением на 1024 и записываются в выходной буфер. Если текущая строка источника влияет на две строки приёмника (indexY = 1) и если уменьшенная строка полностью занесена в буфер, её можно вывести уже на приёмник. После этого буферы 1 и 2 обмениваются своими значениями, и процесс повторяется для следующей строки.

Заметим, что в рисунках с RGB-моделью представления цвета каждая из компонент должна обрабатываться отдельно, т. е. алгоритм выполнится 3 раза по каждой из компонент.

Помимо низкой вычислительной нагрузки предлагаемый алгоритм использует только одну строку источника, 2 строки приёмника, 2 выходных буфера, 2 вектора верхних индексов (по одному на ширину и высоту) и 4 весовых вектора (по 2 на ширину и высоту источника). Как видим, алгоритм нетребователен к объёму памяти и очень удобен для портативных устройств.

Алгоритм увеличения масштаба основан на методе билинейной интерполяции и устроен так, чтобы избежать ненужных вычислений. Так как коэффициенты масштабирования по х и у равны для каждой строки и каждого столбца, то все веса и индексы могут быть занесены в память. В нашем примере рассмотрено растяжение изображения по оси х.

https://pandia.ru/text/78/197/images/image018_47.gif" width="499" height="227 src=">

Рис. 6. Начальный и конечный пиксели.

Первый шаг алгоритма – определение начальных и конечных пикселей источника (см. рис. 6). Начальный пиксель вычисляется так:

https://pandia.ru/text/78/197/images/image020_49.gif" width="544" height="44 src=">

Так как увеличенное изображение может быть панорамировано, то позиция начального пикселя зависит от коэффициента масштабирования и позиции панорамирования. Начало координат панорамирования должно находиться в центральном пикселе приёмника.

Нет необходимости рассчитывать индикатор конечного пикселя, так

как алгоритм разработан так, что процесс представляет собой цикл обработок увеличенных пикселей вместо обработки пикселей самого источника; кроме того, просматриваемое изображение может быть меньше увеличенного из-за обрезки границ.

Каждый увеличенный пиксель получается из четырёх усреднённых пикселей источника (как в билинейной интерполяции). Алгоритм сканирует сразу 2 строки источника, используя фильтр 2*2 для расчёта интерполированных пикселей. Масштабирование может быть осуществлено отдельно по горизонтали и вертикали во время сканирования строк источника. Индексы и веса по горизонтали рассчитываются по формулам

https://pandia.ru/text/78/197/images/image022_49.gif" width="552" height="151 src=">

https://pandia.ru/text/78/197/images/image024_48.gif" width="552" height="317 src=">,

где 0 < x < destination_image_size .

Индикатор равен 1, если значение очередного интерполированного пикселя получается из очередной пары пикселей источника (т. е. центр очередного интерполированного пикселя расположен справа от центра правого пикселя текущей пары пикселей источника) и 0 в противном случае.

Приведённые выше формулы используются и для расчёта индексов и весов по вертикали.

Веса и индексы являются целыми числами. В нашем примере использована 10-битная точность как пример перевода вещественных чисел в целые. Заметим, что когда центр пикселя приёмника расположен слева или выше центра первого пикселя источника (start + x/zoom_factor < 0), алгоритму не хватает левых (верхних) пикселей для расчёта весов. Только первый пиксель источника используется для вычисления левого (верхнего) веса, а правый (нижний) вес полагается равным 0. Если же центр пикселя приёмника расположен справа или ниже центра последнего пикселя источника (input_image_size – 1 < start_pixel + x/zoom_factor), алгоритму не хватает правого (или нижнего) пикселя источника для расчёта весов. Последний пиксель источника используется для расчёта левого (или верхнего) веса, а правый (нижний) полагается равным 0.

Когда строка изображения полностью обработана по ширине, увеличенные пиксели делением на 1024 переводятся в 8-разрядные числа (0…255) и записываются в выходной буфер.

Применение таблиц снижает вычислительную сложность. Для увеличения масштаба изображения используется 2 строки источника и 1 строка приёмника. Дополнительно в памяти хранятся 2 вектора индексов пикселей (по одному на обработку изображения по ширине и высоте), а также 4 весовых вектора (2 на ширину и 2 на высоту). Отсюда видно, что предлагаемый метод не требует больших объёмов памяти и эффективен с вычислительной точки зрения, следовательно, идеален для мобильных устройств.

Панорамирование и обрезка границ.

Когда рисунок отображается в 100%-м масштабе (1:1), один пиксель источника соответствует одному пикселю экранного изображения. В этом случае источник обрезается до соответствующих размеров (если это необходимо), а вместо коэффициента масштаба следует учитывать позицию панорамирования.

Алгоритм начинается с вычисления первого и последнего пикселей в обоих направлениях (горизонтальном и вертикальном):

https://pandia.ru/text/78/197/images/image026_44.gif" width="544" height="80 src=">

Обработка в таком случае заключается в выборе необходимого количества пикселей источника и их копировании в приёмник. Как видим, алгоритм очень быстр – кроме копирования данных в памяти ничего не требуется. А т. к. для обработки нужна только одна строка источника и соответствующая ей строка приёмника, этот способ и в отношении необходимого объёма памяти.

3) Результаты.

Вычислительная сложность предложенных методов была оценена подсчётом числа операций на пиксель. Результаты отражены в табл. 1 и сравнены с результатами работы других алгоритмов масштабирования (см. ). Согласно полученным результатам, реализация алгоритма не требует больших вычислительных затрат.

https://pandia.ru/text/78/197/images/image028_39.gif" width="574" height="151 src=">

Табл. 1. Сравнение результатов тестирования различных методов. (а), (b) – минимальное и максимальное число операций на пиксель при уменьшения области 2*2 соответственно, (с) – число операций на пиксель при увеличении области 2*2.

Другие способы фильтрации (например, бикубический) могут быть реализованы на основе предложенного метода путём вычисления весов, используемых фильтром, и применения таблиц. Таким образом, изменение фильтрации не увеличит вычислительные затраты предложенных методов.

Был также оценён объём необходимой памяти. Так как таблицы фильтрации заполняются до самого процесса масштабирования, то для процесса потребуется память только под 2 строки изображения вне зависимости от метода фильтрации, будь то метод ближайшего соседа, билинейная или бикубическая фильтрация. К примеру, масштабирование 8-разрядного цветного VGA-изображения потребует 2*3*640*8 бит памяти, а изображение разрешением 1 МПикс – 2*3*1024*8 бит.

Визуальное качество представленных алгоритмов соответствует качеству работы алгоритмов билинейной интерполяции и линейной фильтрации для увеличения и уменьшения изображений соответственно.

https://pandia.ru/text/78/197/images/image030_39.gif" width="560" height="423 src=">

https://pandia.ru/text/78/197/images/image032_35.gif" width="559" height="423 src=">

Рис. 7. Пример работы алгоритма уменьшения масштаба.

На рис. 7 представлено 2 рисунка. Сверху показан пример работы представленного алгоритма, снизу – метод усреднения весов, применённый в коммерческом графическом процессоре. Результаты показывают, что предложенный метод лучше методов, описанных в литературе (см. список литературы). Визуальное качество этого метода (при 10-битной точности) сравнимо с показателями реализаций различных алгоритмов, применённых в коммерческих программных продуктах.

4) Заключение.

В данной статье был представлен быстрый метод масштабирования изображений, основанный на усреднении весов смежных пикселей. Алгоритму не присущи блочные артефакты и эффект зубчатых краёв; как результат – хорошее качество изображения.

Алгоритм основан на применении таблиц, заполняемых только однажды, тем самым излишние вычисления сведены к минимуму. Данные таблиц в процессе работы алгоритма только считываются. Цикл обработки изображения очень прост, а его дальнейшее усовершенствование может быть осуществлено, например, ассемблерными средствами.

Данный алгоритм не требует большого количества буферов строк изображения и таблиц, т. е. экономичен с точки зрения объёма потребляемой памяти, а кроме того, эффективен в плане необходимых вычислений. Качество получаемых изображений очень хорошее. Преимущества алгоритма идеальны для реализации в мобильных телефонах и прочих маломощных карманных мультимедиа-устройствах.

В этой статье 711 слов.

Навигация по записям

Как обещал Зарию и Роману, хоть и с задержкой, публикую статью на тему увеличения изображения для подготовки к крупноформатной печати.

Те, кто печатал фото больше, чем 20 х 30 см. наверняка сталкивались с потерей детализации и банальным «замыливанием» картинки. Возможно вы думали, что это следствие недостаточного разрешения камеры и отчасти вы правы.

Но на самом деле всё не так плохо и нет необходимости бежать покупать среднеформатный цифрозадник только для того, чтобы напечаталь фото крупнее, чем 20 х 30 см.

Adobe Photoshop давно вошёл в нашу жизнь и я сам уже не помню с какой версии я начинал (сейчас пользуюсь CS6). Этот программный продукт по удобству и наличию необходимых инструментов просто гениален.

Но не дремлют и его маркетологи. Если бы все лучшие алгоритмы работы с изображениями были внедрены в фотошопе с самого начала, то мы не увидели бы новых версий, компания разорилась бы и нам пришлось бы работать с интерфейсом «каменного века».

Под удар общества потребления как раз и попали алгоритмы увеличения и уменьшения изображения. Они в Adobe Photoshop безбожно устаревшие. Прогресса я давно не наблюдаю, хотя плагины более корректного ресайза существуют уже очень давно.

Для примера я буду использовать собственное фото ювелирной композиции «Мальчик», на которой изображен вооруженный монгольский мальчик.

Оригинал

Изначально фото имело разрешение 3580 х 5382 пикс. (19 Мпикс, был небольшой кроп).

Если следовать канонам печати, оно должно иметь 300dpi в файле для печати.

Если я сниму галочку «Resample» и поставлю 300dpi (т.е. не буду использовать средства увеличения изображения Adobe Photoshop), то фотошоп мне пересчитает размер результирующего отпечатка.

Для такого разрешения снимка он составит 30 х 45 см.

Но представим, что мы хотим с данном отпечатка почти без потери качества отпечатать баннер 3 х 6 м (300 х 600 см.) или 35800 х 53820 пикс. (1927 Мпикс = 1.9 Гпикс). 1.9 Гпикс в цифровой камере очень долго будут мечтой для подавляющего большинства и потому тема статьи так актуальна.

Значит грубо говоря я должен увеличить этот и так не маленький для «переваривания» моим компьютером файл в 10 раз (или чуть более, но на баннере обычно есть еще текст снизу, так что будем считать, что в 10 и не будем учитывать, что баннеры, как правило, горизонтальной ориентации).

Все из вас знают, что у окошка изменения размеров изображения в Adobe Photoshop есть опции, в выпадающем меню внизу?

Всё, что вы видите в выпадающем меню — это виды интерполяции. Т.е. алгоритмы по которым будут рассчитываться недостающие пиксели изображения.

Первые два это особо старые алгоритмы и первый, Nearest Neighbor , Adobe Photoshop рекомендует для сохранения контрастных кромок в изображении.

Вкратце, если их описывать, то Bicubic Smoother даёт мягкие переходы между реальными пикселями, а Bicubic Sharper усиливает контраст кромок.

Проблема состоит в том, что не всегда при увеличении изображения нам нужны эти плавные переходы, и при уменьшении изображения он усиливает кромки слишком сильно, по-варварски. То же самое можно сделать аккуратно, вручную и к этому мы вернемся в самом конце статьи.

Программы и плагины для качественного увеличения изображения

Поскольку работать с гигантским результирующим файлом в 1.9 Гпикс моему компьютеру не под силу, то я использую фрагмент фото для демонстрации увеличения различными алгоритмами.

Фрагмент размером 607 пикселей в ширину. Я его увеличиваю до 3000 пикселей, т.е. в 5 раз.

Оригинал фрагмента

Nearest Neighbour vs Bicubic Smoother

Как видите, Nearest Neighbour даёт «лесенку», которую Bicubic Smoother размывает.

Программа PhotoZoom Pro 5

Простой интерфейс, большой набор математических алгоритмов увеличения с помощью сплайнов.
Многообещающе.

Я взял именно Bicubic Smoother в качестве алгоритма от Adobe, потому что они его рекомендуют. И «лесенки» на фото в наше время уже неприемлемы. Это же не 90-ые годы в конце концов!
Время пиксельных и спрайтовых игр уже ушло.

Из сравнения вы видите, что PhotoZoom Pro справился с задачей увеличения лучше. Но намного ли?

Alien Skin BlowUp2

И...PhotoZoom Pro5 побеждает!

ReShade

ReShade ставится как отдельная маленькая программа.

Старая программа ReShade (2011 г.)побеждает более современную и насыщенную алгоритмами PhotoZoom Pro . Я попробовал PhotoZoom Pro все алгоритмы и существенного улучшения не заметил. Только время потерял.

Так что у нас новый лидер — ReShade, с которым будем сравнивать оставшихся конкурентов.

Kneson Imagener

Отдельная программа. Интерфейс как будто из Win95.

AKVIS Magnifier

Плагин для Adobe Photoshop.

Интерфейс навороченный, а результат — плачевный.

Лидером оказался следующий плагин. Не зря я их давно выделял среди остальных...

OnOne Perfect Resize Professional Edition 7

Плагин для Adobe Photoshop.

ImageJ + plugin Resize

Слышал об том плагине, но не пробовал до сего момента.

Изменять размер нужно через меню «Plugins\Resize\Resize», метод «Least-Squares»

Результат не впечатлил. OnOne Perfect Resize побеждает.

Adobe Photoshop + bicubic sharper

В своей книге The Adobe Photoshop CS6 Book for Digital Photographers (у меня версия книги про CS6) Scott Kelby рекомендует использовать алгоритм bicubic sharper для увеличения фото вместо рекомендованного bicubic smoother .
Что ж...попробуем.

Результат не впечатлил. OnOne Perfect Resize побеждает.

Итоги

1. Я использую для критичных увеличений изображений, чего и вам желаю.

Разница между стандартным способом из Adobe Photoshop и OnOne Perfect Resize Professional Edition 7 большая и вполне заметная на печати.

2. Если вы соберетесь печатать совсем большие форматы, то учтите, что в СНГ сейчас принято использовать разрешение около 100 dpi для баннеров.

Для просто крупных изображений на выставку (1-2 м) используйте 150 dpi, если сложно получить больше. Расстояние просмотра, как правило, ограничено в 1-2 м. и с такого расстояния просмотра данное разрешение выглядит вполне приемлемо.

3. Если вы будете снимать на среднеформатный слайд, то сможете «вытащить» с него разрешения намного большем, чем с цифровой камеры. До 100 Мпикс.

4. Не забывайте о методах повышения резкости. Я в статье сравнил алгоритмы увеличения разрешения при отключенном увеличении резкости. Но к финальному отпечатку я, как правило, добавляю резкости. Конечно, не «в лоб», а, например, таким методом

В следующий раз мы поговорим о не менее важном моменте — уменьшении размеров фото для интернет. Казалось бы что проще, но... Почти все программы делают уменьшение размеров с большой потерей деталей.

Надеюсь данная статья поможет вам сделать красивые большие отпечатки ваших снимков!

Оцените, пожалуйста, статью

(40 votes, average: 4,73 out of 5)

Рекомендовать

Подписаться на RSS ленту

Читайте также:

Похожих статей не найдено


Добавить комментарий Отменить ответ

Войти с помощью:

Гости могут загрузить 2 картинки (можно отметить кликами левой кнопкой мыши на названиях файлов, с зажатой клавишей Ctrl ), размером не более 800KB каждая. Картинки должны быть форматов jpeg, pjpeg, png.

: 33 комментария

        • Роман, здравствуйте!

          Ваш «лайк» видно будет только, если вы зашли в аккаунт Гугл+ на другом компьютере тоже. Иначе Гугл+ вас не опознаёт и не показывает ваш «лайк».

          C1 добавлю завтра, предлагайте еще методы:) В поисках идеала...

          Изображение увеличил с 607 пикс -> 3000 пикс, т.е. в 5 раз.

          Я в статье упомянул, что 1.9 Гп мой компьютер просто не «переварит» в любом случае. Даже нет смысла пытаться.

          Если взять исходные размеры моего полного изображения (3580 х 5382), то получится 17900 х 26910 = 481 Мпикс (приличного качества).

          Я думаю, каждый первый печатник помянет меня нехорошим словом, если я ему принесу такой файл...:) Хотя на резкость ему ругаться и не придётся.

          Идеально, чтобы не раздражать печатника и угодить редактору, стоит отдавать файлы максимум 33 Мпикс. 40-50 в крайнем случае, если редактор совсем не умеет считать (не понимает печатный процесс).

          Т.е. с одной стороны файл 33 Мпикс не так тяжело ворочать дизайнеру издания, а с другой, редактор (часто не понимающий какое на самом деле ему нужно разрешение) будет доволен высоким разрешением на уровне среднего цифрозадника Sinar/Leaf/PhaseOne. Убейте Exif и вот вы владелец виртуального цифрозадника (они не пишут Exif в файл).

          Если же мы говорим про баннер, то всё будет зависеть от мощности вашего компьютера, мощности компьютера типографии и сколько «переварит» рип (чаще не более 250мб) печатной машины. Кстати, будет еще вопрос, обеспечивает ли их печатная машина высокое разрешение. Обычно баннеры 3×6м печатают с максимальным разрешением 75 dpi дабы всем было легче жить.

          Если мы углубимся в теорию (назрела доп.статья?), то при печати баннера 3 х 6 метров и дистанции просмотра 5м (если я относительно близко подойду к рекламному щиту на ножке) минимальное разрешение для печати составит 17 dpi, а файл будет 30 Мпикс. Ближе, как правило, никто не подходит к таким большим баннерам.

          на остальное отвечу завтра...

          Присоединенная картинка:


            • Будучи залогиненным вконтакте нажимаю кнопку вконтакта и ссылка вообще сразу открывается, ничего не спрашивая...

              Суть такая, что нужно быть залогиненным и нажать кнопку. Это проще всего. Я бы вообще это убрал для всех зарегистрированных пользователей эту фишку, но плагин такое разделение не позволяет сделать, а открывать для поисковиков значит вводить доп.нагрузку на и так едва ворочающийся сервер.

              Кстати, комментарий должен был появиться на вашей странице в Гугл+! Если бы я мог вас там найти, то посмотрел бы, есть ли на стене комментарий.

              по фото:

              Увеличивал разрешение по стороне, как и написал 607px->3000px.

              Это достаточно много. Я график внизу прикладывал к сообщению.

              На мой взгляд C1 отчаянно врёт цвета:) Хотя они более приятные, чем в ACR. Что говорить... C1 использует устаревшие профили ICC, а ACR использует DCP-профили. LR не использую, но подозреваю, что результат одинаковый, что и с ACR.

              Пусть график вас так не расстраивает. Это график для идеального случая. Большинство с 0.5м не видят точки уже и на 150 dpi, как ни стараются.

              Ближе 0.5 никто не будет смотреть т.к. некомфортно носом в плакат.

              Если имеется в виду _на 80%_, т.е. 100%->180%, то разрешение упадёт соответственно 300 dpi->166dpi. Иначе говоря даже правильный ресайз делать не нужно, просто печатайте крупнее. С 0.5м никто разницы не увидит между 300 и 166.

              Увеличение в виде геометрической прогрессии (1 2 4 8...пикселов) вряд ли имеет смысл. Оно сильно избыточно. Увеличение 1 исходный пиксель равен 8 на выходе быссмысленно. Это будет «мыло мыльное».

              Про фотообои. Да, «накачивают» и панорамят. Причем чаще именно «накачивают» т.к. сшивка панорам требует относительно много времени.

              А печатник потом все равно разрешение урежет. У него не один клиент и ему нужно гнать поток. На высоком разрешении печатной машины и скорость печати очень низкая и расход краски большой. Вопрос экономии...

              Есть печальный опыт.

              Если сами не оговорите качество печати максимальное, то сделают на низком. Я уже не говорю про раст, который тоже снижает разрешение.

              Не знаю, сшивают ли фотообои, а вот баннеры сшивают. Редко где есть 5-ти метровые машины. Хорошая практика печатать файл на хорошем разрешении кусками, а потом сваривать куски. Разрешение это не повысит, но зато РИП машины переверит всю информацию и можно напечатать в максимальном для этой машины. Нет необходимости уменьшать, пока РИП не сможет его «переварить».

              Широкоформатные печатные машины очень дорогие и потому меняют их редко. Оттого и начинка у них не рассчитана на такие большие размеры файлов.

              3×4м можно сделать из обычного 20мп кадра. Качество весьма достойное (75-100 dpi)

              Я печатаю баннеры по 3м шириной с такого формата. Как правило баннеры бывают и больше, но там уже несколько картинок задействовано или есть текст (печатаю и 3×6м).

              Баннер от фотообоев в том аспекте, в котором мы его сейчас рассматриваем — ничем не отличается.

              К нему тоже можно подойти вплотную и разглядывать точки, но это неудобно т.к. не охватить взглядом изображение целиком.

              Полиграфические материалы, к которым можно отнести фотообои (интерьерная печать) я даю обычно 150 dpi и этого вполне хватает. 300 dpi только для каталогов и то, бывает этого много. Но даю с запасом (в смысле 300dpi это уже с запасом!).

              У меня большой опыт печати каталогов и крупноформатной печати. Никто не будет печатать ваше изображение исходя из идеального качества. Есть много факторов: печатник, печатная машина, менеджер, экономия краски...

              В результате вас всегда будет больше волновать правильно ли передадут цвета на печатной продукции, а вовсе не разрешение. Так сказать, сначала _необходимое_, а потом уже всякие изыски в виде повышенного разрешения. Потому как если наврут цвета (а это сплошь и рядом), то вашу продукцию можно будет сразу сдать в макулатуру.

              Вывод: есть методы повышения разрешения (я написал их в статье) и они _достаточные_ для всех типов печати, чтобы «разогнать» разрешение.

              Для супер-высокого разрешение есть варианты снимать на крупноформатную камеру листовые пленки. В США так многие делают и потом можно напечатать размером с большую стену без потери разрешения. Также можно снимать ч.б. на специальные 35мм пленки типа SPU, Gigabit И проч. При правильной проявке детализация очень высокая, но придётся поступиться цветом. Цветные пленки, даже слайды, не дают такого разрешения. Нужно, как минимум. перейти на средний формат. С тех слайдов можно вытащить 100 Мпикс реальных.

              Тема интересная, если бы все не усугублялось отсутствием нормальных печатных машин и поддерживающей их инфраструктуры.

              Если панорамить и увеличивать, то на каком этапе, увеличивать лучше? — ответ 2. При увеличении готового файла нагрузка на компьютер будет наименьшая. Сшивать несколько гигантских кусков куда как проблемнее...

              3 вариант — плохое качество увеличения.

              Статью подготовлю:)

              в приложении мои баннеры. фото маленькое, он все видно без точек и на большом

              Присоединенная картинка:


ногие фотографы, работающие с цифровыми изображениями, сталкиваются с ситуацией, когда цифровой снимок оказывается меньшего размера, чем нужно для печати. Для того чтобы сделать изображение больше при том же разрешении, в него нужно добавить новые пикселы. Задача состоит в том, чтобы рассчитать цвет новых пикселов, которые необходимо добавить между существующими. Данная процедура называется upsampling и решается путем применения различных алгоритмов. Из общеизвестных upsampling-алгоритмов, которые используются на протяжении уже многих лет, следует назвать три:

  • метод копирования ближайшего пиксела (Nearest neighbor interpolation) — заключается в том, что в изображение добавляются новые пикселы того же цвета, что и расположенные рядом. Цветовые точки дублируются — их создается тем больше, чем больше должно быть изображение. Указанная процедура приводит к возникновению ступенек, которые образуются за счет того, что непрерывные кривые изменения цвета становятся ступенчатыми. Такие изображения называются jagged images 1 , или просто jaggies;
  • билинейная интерполяция (Bilinear interpolation) — выполняется на основе четырех соседних пикселов, дает плавные края (ступенек не возникает), но увеличенное изображение получается нерезким;
  • бикубическая интерполяция (Bicubic interpolation) — дает несколько лучшие результаты, чем билинейная интерполяция, осуществляется на базе анализа 16 соседних пикселов, что обеспечивает более гладкое увеличение размеров. В Photoshop предлагается пользоваться именно бикубическим алгоритмом. Для небольшого увеличения (до 150%) этот метод дает неплохие результаты, однако при дальнейшем увеличении качество сильно падает.

На рис. 1 приведен пример обработки фотографии с помощью традиционных алгоритмов интерполяции.

Все перечисленные методы приводят к дефектам в виде следов интерполяции. В последнее время появились более сложные алгоритмы, которые позволяют минимизировать дефекты интерполяции. На их основе созданы специализированные приложения, выполненные в виде автономных программ или плагинов к Photoshop и другим популярным графическим редакторам. Подобные плагины необходимы всем, кому приходится иметь дело с изображениями недостаточного разрешения, источниками которых служат цифровые фото- и видеокамеры, Интернет и т.п.

На рис. 2 показаны примеры обработки исходной фотографии (см. рис. 1) с помощью программы Imagener от компании Kneson Software.


от компании Kneson Software

Современные upsampling-программы позволяют довести небольшие изображения, взятые с Web-сайтов, до изображений, годных для печати, рассмотреть неясные детали на старых фотографиях и т.п. Подобные программы используются не только в допечатной подготовке, но и в таких областях, как медицина, криминалистика, астрономия.

В данной статье рассматриваются не только Upsampling-приложения, созданные компаниями, специализирующимися на обработке изображений, но и программы, разработанные отдельными программистами. Большинство программ, рассматриваемых в этой статье, можно найти на нашем CD-ROM-приложении.

1 Изображение с рваными (зазубренными, ступенчатыми) краями.

Imagener

Разработчик: Kneson Software

Платформа: Windows

Программа выпускается в трех модификациях: Enhanced — 29,95 долл., Professional — 49,95 долл., Unlimited — 99,95 долл.

Одна из лучших программ в области увеличения цифровых изображений, выпускаемая в трех модификациях — Enhanced, Professional и Unlimited.

Imagener Enhanced Enlargement

Приложение обеспечивает увеличение цифровых изображений в форматах JPG, GIF, TIF, BMP, PCX, PSD, ETC. В нем применяется интеллектуальный модуль, который анализирует большую область вокруг каждого пиксела, чтобы качественно увеличить изображение. Приложение позволяет достигать 200-300-процентного увеличения без заметной потери качества.

Imagener Professional Enlargement

Приложение обладает всеми возможностями версии Enhanced, а кроме того, в нем используется технология Kneson Progressive++ Enlargement Method, которая базируется на контентно-зависимой интерполяции, учитывающей сложность изображения. Программа позволяет выполнять более чем 300-процентное увеличение без визуально заметной потери качества.

Imagener Unlimited Enlargement

Данная версия обладает возможностями Imagener Enhanced и Imagener Professional, а кроме того, в ней применяется интерполяционная технология Kneson Unlimited++ Enlargement Method, которая сначала переводит растровое изображение в векторное, потом увеличивает его, что дает высокое качество, а затем обратно растеризует изображение в один из популярных форматов, например в JPEG, GIF или TIF (рис. 3).

Рис. 3. Пример работы программы Imagener Unlimited Enlargement

По данным разработчика, технология Imagener Unlimited разрабатывалась около десяти лет и в нее было инвестировано более 2,5 млн. долл. Имеется демо-версия.

Сравнительная характеристика версий программы Imagener приведена в табл. 1.

Скачать приложения можно по адресу: http://www.imagener.com/Download.html

Pxl SmartScale 1

Разработчик: Extensis, Inc.

Цена: 199,95 долл.

Платформа: Windows и Mac OS

Pxl SmartScale — одна из самых дорогих программ для интерполяции. Разработчики не раскрывают сути реализованных алгоритмов и лишь заявляют, что программа обеспечивает увеличение размеров до 1600% без видимого ухудшения качества (рис. 4). Среди полезных функций программы — предпросмотр, возможность контроля резкости и контраста результирующего изображения, кадрирование. Имеется 30-дневная ознакомительная версия.


увеличение размеров до 1600%
без видимого ухудшения качества

PhotoZoom Professional

Разработчик: Shortcut

Платформа: Windows и Mac OS

Цена: 129 евро

Многие фотографы сталкиваются с проблемой потери качества, возникающей при увеличении размера цифрового изображения. Побочными эффектами при этом являются расфокусировка изображения и зубчатые края, свойственные изображениям, которые были обработаны в одном из примитивных приложений для увеличения изображения. Shortcut PhotoZoom Professional (рис. 5) позволяет увеличивать цифровые изображения без возникновения вышеуказанных дефектов. Программа использует технологию S-Spline, которая основана на патентованном алгоритме оптимальной самонастраивающейся интерполяции (self-adjusting interpolation) (рис. 6).

Особенности программы:

  • усовершенствованный S-Spline-алгоритм;
  • инструменты настройки, позволяющие повысить качество изображения при увеличении;
  • пакетная обработка;
  • поддержка широкого спектра графических форматов;
  • автономное приложение или Adobe Photoshop-плагин;
  • бесплатная ознакомительная версия.

Более дешевую версию программы, адресованную домашним пользователям, можно приобрести за 49 евро в составе пакета программ Shortcut PhotoMagic, куда, помимо программы для увеличения изображения без визуальной потери качества, входит ряд утилит по обработке цифровых изображений.

Resize Pro

Разработчик: Фред Миранда (Fred Miranda)

Платформа: Windows и Mac OS

Цена: 30 долл.

Resize Pro — это плагин для Photoshop, основанный на операции интерполяции. Суть алгоритма состоит в автоматическом выборе пикселов, которые в наибольшей степени отвечают за детали на изображении. Эти пикселы обрабатываются специальным образом. Данный алгоритм позволяет получить более детализированные и натурально выглядящие снимки как при увеличении, так и при уменьшении изображения.

При уменьшении размера Resize Pro обеспечивает максимально возможное качество, анализируя, информация от каких точек важна, а какими можно пренебречь.

При использовании данного плагина изображение не пострадает от посторонних эффектов типа ореола вокруг контрастных областей. Другая особенность программы — это высокая скорость работы. Resize Pro работает на базе Photoshop 6, 7, CS, CS2, Elements 1, 2 и 3.

Плагин для конкретной камеры (рис. 7) можно подобрать по адресу: http://www.fredmiranda.com/software .

Genuine Fractals

Разработчик: LizardTech, Inc.

Платформа: Windows

Цена: Genuine Fractals 4.0 — 159 долл.; Genuine Fractals PrintPro 4.0 — 299 долл.

Genuine Fractals от компании Lizard Technologies — популярный пакет для увеличения разрешения изображений (рис. 8). Реализованные в Genuine Fractals интерполяционные алгоритмы основаны на кодировании изображения методом IFS (Iterated functions system) 2 . Они позволяют растягивать отдельные фрагменты изображения с учетом их локальных геометрических характеристик и соответственно избегать дефектов интерполяции (зубцов, ореолов и т.п.).

Программа обеспечивает конвертирование изображения в собственный формат Genuine Fractals, в котором изображение хранится в более компактном виде. Это дает возможность хранить и передавать по Сети большее количество изображений.

В качестве плагина Photoshop Genuine Fractals добавляет к приложению Adobe Photoshop дополнительную функцию — разрешение по запросу (resolution on demand), то есть позволяет получать файлы разного разрешения из одного базового кода.

Программа обеспечивает возможность увеличения изображения до 600% без видимой потери качества.

Genuine Fractals PrintPro 4.0 поддерживает все цветовые модели, включая CMYK и CIE-Lab.

Функциональность демо-версии ограничена 12 файловыми операциями.

Сравнительная характеристика продуктов Genuine Fractals представлена в табл. 2.

2 Метод систем итерируемых функций (Iterated Functions System, IFS) появился в середине 80-х годов как простое средство получения фрактальных структур. IFS представляет собой систему функций из некоторого фиксированного класса функций, отображающих одно многомерное множество на другое.

Resize Magic

Разработчик: FSoft

Платформа: Windows

Цена: 24 евро

Photoshop-плагин Resize Magic позволяет не только увеличивать (рис. 9), но и уменьшать изображения. Нелицензированная программа вставляет в изображение метки.

Рис. 9. Изображение увеличено с 500x667
до 2800x3735 пикселов: слева — с помощью программы Adobe Photoshop, справа —
с помощью Resize Magic

Загрузить программу можно по адресу: http://www.fsoft.it/imaging/en/Download.htm .

Resize IT

Разработчик: Брайан Спэнглер (Brian Spangler)

Платформа: Windows

Цена: 25 долл.

Resize IT — это Adobe Photoshop-плагин, который работает со всеми приложениями, поддерживающими Adobe-совместимые плагины. Если вам необходимо увеличить 3-мегапиксельное изображение до 11 мегапикселов, то Resize IT предложит несколько интерполяционных алгоритмов, из которых можно будет выбрать оптимальный для конкретного случая. Приложение окажется полезным для профессиональных фотографов (рис. 10). Незарегистрированная версия позволяет обработать 15 изображений.

Inzoomnia

РРазработчик: Ларс Морман (Lars Mohrmann)

Платформа: Windows

Цена: 15 евро

Inzoomnia — это самая дешевая программа в данном обзоре. Приложение хорошо справляется с прямыми и скругленными линиями, но генерирует зазубрины в остроугольных элементах изображения (рис. 11). Имеется демонстрационная версия, в которой отсутствует возможность сохранения файлов.


и с помощью алгоритма Inzoomnia

Qimage

Разработчик: Digital Domain

Платформа: Windows

Цена: 45 долл.

Программа Qimage будет интересна пользователям, которых увеличение изображений интересует преимущественно в контексте вывода на печать. Она предназначена для того, чтобы печатать увеличенные изображения с надлежащим качеством. Qimage использует собственные алгоритмы — более интеллектуальные, чем бикубическая интерполяция.

Программа позволяет напечатать изображения с максимальным качеством, оптимально размещает несколько снимков на странице, благодаря чему экономится дорогостоящая фотобумага (рис. 12). Помимо интеллектуальных алгоритмов увеличения изображения имеются фильтры шума, удаление пятен, функции настройки яркости, контраста, резкости, вращения изображения, зеркального преобразования и т.д. Поддерживаются форматы JPEG, TIF, BMP, GIF, PCX, TGA, PCD, PNG, и NEF (Nikon D1 raw).

Pictura

Разработчик: Digital Multi Media Design

Платформа: Windows

Цена: проект пока не коммерциализован

Pictura — это программа обработки графики, которая использует оригинальные алгоритмы интерполяции, подавление шума, фокусировку и другие фильтры, которые применяются для редактирования цифровых фотографий и в допечатной подготовке.

Pictura основана на методе интерполяции AQua-2 (Adaptive Quadratic v.2), согласно которому для каждого из синтезируемых пикселов рассчитывается распределение вероятности значений цветовых компонентов, зависящее от локальных характеристик изображения.

Проект находится на стадии тестирования предварительной альфа-версии, участие в котором возможно с согласия авторов (размер установочного файла — 9 Mбайт).



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows