Устройство лазерной указки дальнего действия. Как сделать лазер который прожигает. Как сделать боевой лазер в домашних условиях. Работа с лазерным модулем

Устройство лазерной указки дальнего действия. Как сделать лазер который прожигает. Как сделать боевой лазер в домашних условиях. Работа с лазерным модулем

03.11.2019

В узконаправленный луч, как правило используется двояковыпуклая линза -коллиматор . Однако при качественной фокусировке луча (которую можно произвести самостоятельно подкручивая прижимную гайку линзы), указку можно использовать для проведения опытов с лазерным лучом (например, для изучения интерференции). Мощность наиболее распространенных лазерных указок 0,1-50 мВт , в продаже имеются и более мощные до 2000 мВт . В большинстве из них лазерный диод не закрыт, поэтому разбирать их надо крайне осторожно. Со временем открытый лазерный диод «выгорает», из-за чего его мощность падает. Со временем подобная указка практически перестанет светить, вне зависимости от уровня заряда батарейки . Зелёные лазерные указки имеют сложное строение и больше напоминают по устройству настоящие лазеры.

Лазерная указка

Типы лазерных указок

Ранние модели лазерных указок использовали гелий-неоновые (HeNe) газовые лазеры и излучали в диапазоне 633 нм. Они имели мощность не более 1 мВт и были очень дорогими. Сейчас лазерные указки, как правило, используют менее дорогие красные диоды с длиной волны 650-670 нм. Указки чуть подороже используют оранжево-красные диоды с λ=635 нм, которые делают их более яркими для глаз, так как человеческий глаз видит свет с λ=635 нм лучше, чем свет с λ=670 нм. Производятся и лазерные указки других цветов; например, зеленая указка с λ=532 нм - хорошая альтернатива красной с λ=635 нм, поскольку человеческий глаз приблизительно в 6 раз чувствительнее к зелёному свету по сравнению с красным. В последнее время набирают популярность жёлто-оранжевые указки с λ=593,5 нм и синие лазерные указки с λ=473 нм.

Красные лазерные указки

Самый распространенный тип лазерных указок. В этих указках используется лазерные диоды с коллиматором. Мощность варьируется приблизительно от одного милливатта до ватта. Маломощные указки в форм-факторе брелока питаются от маленьких батареек-«таблеток» и на сегодняшний день (апрель 2012 г.) стоят порядка 1$. Мощные красные указки - одни из самых дешевых по соотношению цена/мощность. Так, фокусируемая лазерная указка мощностью 200мВт, способная зажигать хорошо поглощающие излучение материалы (спички, изоленту, тёмную пластмассу и т. д.), стоит порядка 20-30$. Длина волны - примерно 650 нм.

Более редкие красные лазерные указки используют Твердотельный лазер c диодной накачкой (diode-pumped solid-state , DPSS) и работают на длине волны 671 нм.

Зеленые лазерные указки

Устройство зеленой лазерной указки типа DPSS, длина волны 532nm.

Луч лазерной указки 100мВт, направленный в ночное небо.

Зеленые лазерные указки начали продаваться в 2000 году. Самый распространенный тип твердотельных с диодной накачкой (DPSS) лазеров. Лазерные диоды зелёного цвета не производятся, поэтому используется другая схема. Устройство намного сложнее, чем у обычных красных указок, и зелёный свет получают довольно громоздким способом.

Сначала мощным (обычно >100 мВт) инфракрасным лазерным диодом с λ=808 нм накачивается кристалл ортованадата иттрия с неодимовым легированием (Nd:YVO 4), где излучение преобразуется в 1064 нм. Потом, проходя через кристалл титанила-фосфата калия (KTiOPO 4 , сокр. KTP), частота излучения удваивается (1064 нм → 532нм) и получается видимый зелёный свет. КПД схемы около 20 %, большая часть приходится на комбинацию 808 и 1064 нм ИК . На мощных указках >50 мВт нужно устанавливать инфракрасный фильтр (IR-фильтр ), чтобы убрать остатки ИК-излучения и избежать повреждения зрения. Также стоит отметить высокую энергозатратность зелёных лазеров - в большинстве используются две AA/AAA/CR123 батареи.

473 нм (бирюзовый цвет)

Данные лазерные указки появились в 2006 году и имеют схожий с зелёными лазерными указками принцип работы. 473 нм свет обычно получают путем удвоения частоты 946 нм лазерного излучения. Для получения 946 нм используется кристалл алюмо-иттриевого граната с добавками неодима (Nd:YAG).

445 нм (синий цвет)

В этих лазерных указках свет излучается мощным синим лазерным диодом. Большинство подобных указок относится к 4-му классу лазерной опасности и представляет очень серьёзную опасность для глаз и кожи. Своё активное распространение начали в связи с выпуском компанией Casio проекторов , использующих вместо привычных ламп мощные лазерные диоды.

Фиолетовые лазерные указки

Свет в фиолетовых указках генерируется лазерным диодом, излучающим луч с длиной волны 405 нм. Длина волны 405 нм находится на границе диапазона, воспринимаемого человеческим зрением и поэтому лазерное излучение таких указок кажется тусклым. Однако, свет указки вызывает флюоресценцию некоторых предметов, на которые он направлен, яркость которой для глаза выше, чем яркость самого лазера.

Фиолетовые лазерные указки появились сразу после появления Blu-ray -приводов, в связи с началом массового производства лазерных диодов на 405 нм.

Жёлтые лазерные указки

В жёлтых лазерных указках используется DPSS лазер, излучающий одновременно две линии: 1064 нм и 1342 нм. Это излучение попадает в нелинейный кристалл, который поглощает фотоны этих двух линий и излучает фотоны 593,5 нм (суммарная энергия 1064 и 1342 нм фотонов равна энергии фотона 593,5 нм). КПД таких жёлтых лазеров составляет около 1 %.

Использование лазерных указок

Безопасность

Лазерное излучение опасно при попадании в глаза.

Обычные лазерные указки имеют мощность 1-5 мВт и относятся к классу опасности 2 - 3А и могут представлять опасность, если направлять луч в человеческий глаз достаточно продолжительное время или через оптические приборы. Лазерные указки мощностью 50-300 мВт относятся к классу 3B и способны причинить сильные повреждения сетчатке глаза даже при кратковременном попадании прямого лазерного луча, а также зеркально или диффузно отражённого.

В лучшем случае лазерные указки оказывают только раздражающее воздействие. Но последствия будут опасными, если луч попадает в чей-то глаз или направлен в водителя или пилота и может отвлечь их или даже ослепить. Если это приведёт к аварии, то повлечёт за собой уголовную ответственность.

Всё более многочисленные «лазерные инциденты» вызывают в России, Канаде, США и Великобритании требования ограничить или запретить лазерные указки. Уже сейчас в Новом Южном Уэльсе предусмотрен штраф за обладание лазерной указкой, а за «лазерное нападение» - срок лишения свободы до 14 лет.

Также важно учесть, что у большинства дешёвых китайских лазеров, работающие по принципу накачки (то есть зелёные, жёлтые и оранжевые) отсутствует ИК-фильтр ради соображения экономии, и такие лазеры фактически представляют большую опасность для органов зрения, чем заявлено производителями.

Примечания

Ссылки

  • Laser Pointer Safety website Включает данные о безопасности

Превратите лазерную указку MiniMag в режущий лазер с излучателем от пишущего DVD! Этот 245 мВт лазер очень мощный и идеально подходит по размеру к указке MiniMag! Посмотрите прилагаемое видео. ОБРАТИТЕ ВНИМАНИЕ: сделать подобное своими руками можно НЕ СО ВСЕМИ диодами CDRW-DVD резаков!

Предупреждение: ОСТОРОЖНО! Как вы знаете, лазеры могут быть опасны. Никогда не наводите указатель на живое существо! Это не игрушка и обращаться с ним как с обычной лазерной указкой нельзя. Другими словами, не используйте его на презентациях или в игре с животными, не разрешайте детям играть с ним. Это устройство должно находиться в руках здравомыслящего человека, который осознает и отвечает за потенциальную опасность, которую представляет собой указатель.

шаг 1 - Что вам потребуется…

Вам понадобятся следующее:

1. 16X DVD-резак. Я использовал привод LG.

шаг 2 - И…

2. лазерную указку MiniMag можно приобрести в любом магазине, торгующим железом, спортивными или бытовыми товарами.

3. Корпус AixiZ с AixiZ за 4,5 доллара

4. Маленькие отвертки (часовые), канцелярский нож, ножницы по металлу, дрель, круглый напильник и другие мелкие инструменты.


шаг 3 - Выньте лазерный диод из DVD-привода

Выкрутите шурупы из DVD-привода, снимите крышку. Под ней вы обнаружите узел привода каретки лазера.


шаг 4 - Выньте лазерный диод…

хотя DVD-приводы отличаются, в любом есть две направляющие, по которым движется каретка лазера. Снимите шурупы, освободите направляющие и выньте каретку. Отсоедините разъемы и плоские шлейфы-кабели.


шаг 5 - Продолжаем разбирать…

Вынув каретку из привода, начните разбирать устройство с раскручивания шурупов. Мелких шурупов будет много, поэтому запаситесь терпением. Отсоедините кабели от каретки. Там может быть два диода, один для чтения диска (инфракрасный диод) и собственно красный диод, с помощью которого осуществляется прожиг. Вам нужен второй. К красному диоду с помощью трех шурупчиков прикреплена печатная плата. Используйте паяльник для АККУРАТНОГО снятия 3 шурупов. Вы сможете проверить диод с помощью двух пальчиковых батареек с учетом полярности. Вам придется вытащить диод из корпуса, который будет отличаться в зависимости от привода. Лазерный диод - очень хрупкая деталь, поэтому будьте предельно аккуратны.


щаг 6 - Лазерный диод в новом обличье!

Так должен выглядеть ваш диод после «освобождения».


шаг 7 - Готовим корпус AixiZ…

Снимите наклейку с корпуса AixiZ и раскрутите корпус на верхнюю и нижнюю части. Внутри верхней располагается лазерный диод (5 мВт), который мы заменим. Я использовал нож X-Acto и после двух легких ударов, родной диод вышел. Вообще-то при подобных действиях диод может повредиться, но я и ранее умудрялся этого избежать. Используя очень маленькую отвертку, выбил излучатель.


шаг 8 - Собираем корпус…

я использовал немного термоклея и аккуратно установил новый DVD диод в корпусе AixiZ. Плоскогубцами я МЕДЛЕННО давил на края диода по направлению к корпусу до тех пор, пока он не встал заподлицо.


шаг 9 - Устанавливаем его в MiniMag

После того как два проводника будут припаяны к положительному и отрицательному выводам диода, можно будет устанавливать устройство в MiniMag. После разбора MiniMag (снимите крышку, отражатель, линзу и излучатель) вам нужно будет увеличить рефлектор MiniMag, используя круглый напильник или дрель или оба инструмента.


шаг 10 - Последний шаг

Выньте батарейки из MiniMag и после проверки полярности, аккуратно поместите корпус DVD лазера в верхнюю часть MiniMag, где ранее находился излучатель. Соберите верхнюю часть корпуса MiniMag, закрепите отражатель. Пластмассовая линза MiniMag вам не пригодится.


Убедитесь в том, что полярность диода определена правильно до того, как вы его установите и подключите питание! Возможно, вам придется укоротить проводки и настроить фокусировку луча.

шаг 11 - Семь раз отмерь

Верните батарейки (AA) на место, закрутите верхнюю часть MiniMag, включая вашу новую лазерную указку! Внимание!! Лазерные диоды представляют опасность, поэтому не наводите луч на людей и животных.


]Книга

Название
Автор : коллектив
Формат : Смешанный
Размер : 10.31 Мб
Качество : Отличное
Язык : Русский
Год издания : 2008

Как в фантастическом фильме - нажимаешь на курок и взрывается шар! Научись делать такой лазер!
Сделать такой лазер можно самому, в домашних условиях из DVD привода - не обязательно рабочего. Ничего сложного нет!
Поджигает спички, лопает воздушные шарики, режет пакеты и изоленту и многое другое
Ещё им можно лопнуть шарик или лампочку в доме напротив
В архиве - видео с лазером в действии и подробная русская инструкция с картинками по его изготовлению!

Каждый из нас держал в руках лазерную указку. Несмотря на декоративность применения, в ней находится самый настоящий лазер , собранный на основе полупроводникового диода. Такие же элементы устанавливаются на лазерных уровнях и.

Следующее популярное изделие, собранное на полупроводнике – записывающий DVD привод вашего компьютера. В нем установлен более мощный лазерный диод, обладающей термической разрушительной силой.

Это позволяет прожигать слой диска, нанося на него дорожки с цифровой информацией.

Как работает полупроводниковый лазер?

Устройства подобного типа недорогие в производстве, конструкция достаточно массовая. Принцип лазерных (полупроводниковых) диодов основан на использовании классического p-n перехода . Работает такой переход, как и в обычных светодиодах.

Разница в организации излучения: светодиоды излучают «спонтанно», а лазерные диоды «вынужденно».

Общий принцип формирования так называемой «заселенности» квантового излучения выполняется без зеркал. Края кристалла скалываются механическим путем, обеспечивая эффект преломления на торцах, сродни зеркальной поверхности.

Для получения различного типа излучения может использоваться «гомопереход», когда оба полупроводника одинаковые, или «гетеропереход», с разными материалами перехода.



Собственно лазерный диод является доступной радиодеталью. Его можно купить в магазинах, торгующих радиодеталями, а можно извлечь из старого привода DVD-R (DVD-RW).

Важно! Даже простой лазер, используемый в световых указках, может серьезно повредить сетчатку глаза.

Более мощные установки, с прожигающим лучом, могут лишить зрения или нанести ожоги кожного покрова. Поэтому при работе с подобными устройствами, соблюдайте предельную осторожность.

Имея в распоряжении такой диод, вы сможете легко изготовить мощный лазер своими руками. Фактически, изделие может быть вовсе бесплатным, или обойдется вам за смешные деньги.

Лазер своими руками из ДВД привода

Для начала, необходимо раздобыть сам привод. Его можно снять со старого компьютера или приобрести на барахолке за символическую стоимость.

Информация: Чем выше заявленная скорость записи, тем более мощный прожигающий лазер применяется в приводе.

Сняв корпус, и отсоединив управляющие шлейфы, демонтируем пишущую головку вместе с кареткой.



Порядок извлечения лазерного диода:

  1. Соединяем ножки диода между собой с помощью проволоки (шунтируем). При демонтаже может накопиться статическое электричество, и диод может выйти из строя
  2. Удаляем алюминиевый радиатор. Он достаточно хрупкий, имеет крепление, конструктивно «заточенное» под конкретный ДВД привод, и при дальнейшей эксплуатации не нужен. Просто перекусываем радиатор кусачками (не повреждая диод)
  3. Выпаиваем диод, освобождаем ножки от шунта.

Элемент выглядит так:



Следующий важный элемент – схема питания лазера. Использовать блок питания из DVD привода не получится. Он интегрирован в общую схему управления, извлечь его оттуда технически невозможно. Поэтому изготавливаем питающую схему самостоятельно.

Есть соблазн просто подключить 5 вольт с ограничительным резистором, и не мучиться со схемой. Это неверный подход, поскольку любые светодиоды (в том числе и лазерные) питаются не напряжением, а током. Соответственно нужен токовый стабилизатор. Самый доступный вариант – использование микросхемы LM317.



Выходной резистор R1 подбирается в соответствии с током питания лазерного диода. В данной схеме ток должен соответствовать 200 мА.

Собрать лазер своими руками можно в корпусе от световой указки, либо приобрести готовый модуль для лазера в магазинах электроники или на китайских сайтах (например, Али Экспресс).

Преимущество такого решения – вы получаете готовую регулируемую линзу в комплекте. Схема блока питания (драйвер) легко умещается в корпусе модуля.



Если вы решили изготовить корпус самостоятельно, из какой-нибудь металлической трубки – можно использовать штатную линзу от того же привода DVD. Только надо будет придумать способ крепления, и возможность юстировки фокуса.



Важно! Фокусировать луч необходимо при любой конструкции. Он может быть параллельным (если нужна дальность) или конусообразным (при необходимости получить концентрированное термическое пятно).

Линза в комплекте с регулирующим устройством именуется коллиматором.

Чтобы правильно подключить лазер из двд привода, нужна схема контактов. Вы можете отследить минусовой и плюсовой провод по маркировке, на монтажной плате. Сделать это нужно перед демонтажем диода. Если такой возможности нет – воспользуйтесь типовой подсказкой:

Минусовой контакт имеет электрическую связь с корпусом диода. Найти его не составит труда. Относительно минуса, расположенного внизу, плюсовой контакт будет справа.

Если у вас трехножечный лазерный диод (а таких большинство), слева будет или неиспользуемый контакт, или подключение фотодиода. Так бывает, если в одном корпусе расположен и прожигающий и считывающий элемент.

Основной корпус подбирается исходя из размера батареек или аккумуляторов, которые вы планируете использовать. В него аккуратно закрепите свой самодельный лазерный модуль, и прибор готов к применению.



С помощью такого инструмента можно заниматься гравировкой, выжиганием по дереву, раскроем легкоплавких материалов (ткань, картон, фетр, пенопласт и пр.).

Как сделать еще более мощный лазер?

Если вам необходим резак по дереву или пластику, мощности стандартного диода из ДВД привода недостаточно. Понадобиться либо готовый диод мощностью 500-800 мВт, либо придется потратить много времени на поиски подходящих DVD приводов. В некоторых моделях LG и SONY устанавливаются лазерные диоды мощностью 250-300 мВт.

Главное – что подобные технологии доступны для самостоятельного изготовления.

Пошаговая видео инструкция рассказывающая как сделать своими руками лазер из ДВД привода

Многие из вас наверняка слышали, что изготовить лазерную указку или даже режущий луч вполне можно дома, используя простые подручные средства, но как сделать лазер самостоятельно, известно мало кому. Прежде чем приступать к работе над ним, обязательно ознакомьтесь с техникой безопасности.

Правила безопасности при работе с лазером

Неправильное использование луча, особенно высокой мощности, может привести к порче имущества, а также сильно навредить вашему здоровью или здоровью сторонних наблюдателей. Поэтому, прежде чем испытывать собственноручно сделанный экземпляр, запомните следующие правила:

  1. Проследите, чтобы в комнате, где проводятся испытания, не было животных или детей.
  2. Никогда не направляйте луч на животных или людей.
  3. Используйте защитные очки, например, очки, применяемые при проведении сварочных работ.
  4. Помните, что даже отраженный луч может навредить зрению. Никогда не светите лазером в глаза.
  5. Не используйте лазер для воспламенения предметов, находясь в закрытом помещении.

Простейший лазер из компьютерной мыши

Если лазер необходим вам только ради развлечения, достаточно знать, как сделать лазер в домашних условиях из мышки. Его мощность будет совсем незначительной, зато и изготовить его труда не составит. Понадобится лишь компьютерная мышка, небольшой паяльник, батарейки, провода и тумблер отключения.


Сначала мышь необходимо разобрать. Важно не выламывать делали, а аккуратно раскручивать и снимать их по порядку. Сначала верхний кожух, за ним нижний. Далее, используя паяльник, нужно убрать лазер мышки с платы и припаять к нему новые провода. Теперь остается присоединить их к тумблеру отключения и подвести проводки к контактам батареек. Батарейки можно использовать любого типа: и пальчиковые, и так называемые блинчики.

Таким образом, простейший лазер готов.

Если слабенького луча вам мало, и вам интересно как сделать лазер в домашних условиях из подручных средств с достаточно большой мощностью, то стоит попробовать более сложный способ его изготовления, используя при этом DVD-RW привод.


Для работы вам понадобятся:

  • DVD-RW привод (скорость записи должна составлять не менее 16х);
  • аккумулятор ААА, 3 шт.;
  • резистор (от двух до пяти Ом);
  • коллиматор (заменить можно деталью от дешевой китайской лазерной указки);
  • конденсаторы 100 пФ и 100 мФ;
  • фонарь светодиодный из стали;
  • провода и паяльник.

Ход выполнения работ:

Первое, что нам необходимо, – это лазерный диод. Расположен он в каретке DVD-RW привода. Он имеет больший радиатор, чем обычный инфракрасный диод. Но будьте осторожны, эта деталь является весьма хрупкой. Пока диод не установлен, лучше всего произвести обмотку его вывода проволокой, поскольку он слишком чувствителен к статическому напряжению. Обратите особое внимание на полярность. Если питание подвести неверно – диод тут же выйдет из строя.


Соедините детали по следующей схеме: аккумулятор, кнопка включения/выключения, резистор, конденсаторы, лазерный диод. Когда работоспособность конструкции проверена, остается лишь придумать для лазера удобный корпус. Для этих целей вполне подойдет стальной корпус от обычного фонаря. Не забудьте также про коллиматор, ведь именно он превращает излучение в тоненький луч.

Теперь, когда вы знаете, как сделать лазер в домашних условиях, не забывайте о соблюдении техники безопасности, храните его в специальном чехле и не носите с собой, так как правоохранительные органы могут выдвинуть вам претензии по этому поводу.

Смотрите видео: Лазер из DVD привода в домашних условиях и своими руками

Сегодня мы поговорим о том, как сделать самостоятельно мощный зеленый или синий лазер в домашних условиях из подручных материалов своими руками. Также рассмотрим чертежи, схемы и устройство самодельных лазерных указок с поджигающим лучом и дальностью до 20 км

Основой устройства лазера служит оптический квантовый генератор, который, используя электрическую, тепловую, химическую или другую энергию, производит лазерный луч.

В основе работы лазера служит явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение, то есть является его точной копией. Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу
Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых. В состоянии равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.). В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника.

В квантовом генераторе нет внешнего потока фотонов, инверсная заселенность создается внутри него с помощью различных источников накачки. В зависимости от источников существуют различные способы накачки:
оптический - мощная лампа-вспышка;
газовый разряд в рабочем веществе (активной среде);
инжекция (перенос) носителей тока в полупроводнике в зоне
р-п переходах;
электронное возбуждение (облучение в вакууме чистого полупроводника потоком электронов);
тепловой (нагревание газа с последующим его резким охлаждением;
химический (использование энергии химических реакций) и некоторые другие.


Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное - через него луч лазера частично выходит из резонатора.

Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности - это так называемые гигантские импульсы. Этот режим работы лазера называют режимом модулированной добротности.
Лазерный луч представляет собой когерентный, монохромный, поляризованный узконаправленный световой поток. Одним словом, это луч света, испускаемый мало того, что синхронными источниками, так еще и в очень узком диапазоне, причем направленно. Этакий чрезвычайно сконцентрированный световой поток.

Генерируемое лазером излучение является монохроматическим, вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляризаторы, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

От того, какое рабочее тело использовано в лазере, зависит рабочая длина его волны, а также остальные свойства. Рабочее тело подвергается "накачке" энергией, чтобы получить эффект инверсии электронных населённостей, который вызывает вынужденное излучение фотонов и эффект оптического усиления. Простейшей формой оптического резонатора являются два параллельных зеркала (их также может быть четыре и больше), расположенных вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается. До момента выхода наружу волна может отражаться многократно.


Итак, сформулируем кратко условия, необходимые для создания источника когерентного света:

нужно рабочее вещество с инверсной населенностью. Только тогда можно получить усиление света за счет вынужденных переходов;
рабочее вещество следует поместить между зеркалами, которые осуществляют обратную связь;
усиление, даваемое рабочим веществом, а значит, число возбужденных атомов или молекул в рабочем веществе должно быть больше порогового значения, зависящего от коэффициента отражения выходного зеркала.

В конструкции лазеров могут быть использованы следующие типы рабочих тел:

Жидкость. Применяется в качестве рабочего тела, например, в лазерах на красителях. В состав входят органический растворитель (метанол, этанол или этиленгликоль), в котором растворены химические красители (кумарин или родамин). Рабочая длина волны жидкостных лазеров определяется конфигурацией молекул используемого красителя.


Газы. В частности, углекислый газ, аргон, криптон или газовые смеси, как в гелий-неоновых лазерах . "Накачка" энергией этих лазеров чаще всего осуществляется с помощью электрических разрядов.
Твёрдые тела (кристаллы и стёкла). Сплошной материал таких рабочих тел активируется (легируется) посредством добавления небольшого количества ионов хрома, неодима, эрбия или титана. Обычно используются следующие кристаллы: алюмо-иттриевый гранат, литиево-иттриевый фторид, сапфир (оксид алюминия) и силикатное стекло. Твердотельные лазеры обычно "накачиваются" импульсной лампой или другим лазером.

Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, "накачиваются" электрическим током , что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.


Чтобы превратить усилитель в генератор, необходимо организовать обратную связь. В лазерах она достигается при помещении активного вещества между отражающими поверхностями (зеркалами), образующими так называемый "открытый резонатор" за счет того, что часть излученной активным веществом энергии отражается от зеркал и опять возвращается в активное вещество

В Лазере используются оптические резонаторы различных типов - с плоскими зеркалами, сферическими, комбинациями плоских и сферических и др. В оптических резонаторах, обеспечивающих обратную связь в Лазере, могут возбуждаться только некоторые определённые типы колебаний электромагнитного поля, которые называются собственными колебаниями или модами резонатора.

Моды характеризуются частотой и формой, т. е. пространственным распределением колебаний. В резонаторе с плоскими зеркалами преимущественно возбуждаются типы колебаний, соответствующие плоским волнам, распространяющимся вдоль оси резонатора. Система из двух параллельных зеркал резонирует только на определенных частотах - и выполняет в лазере еще и ту роль, которую в обычных низкочастотных генераторах играет колебательный контур.

Использование именно открытого резонатора (а не закрытого - замкнутой металлической полости - характерного для СВЧ диапазона) принципиально, так как в оптическом диапазоне резонатор с размерами L = ? (L - характерный размер резонатора,? - длина волны) просто не может быть изготовлен, а при L >> ? закрытый резонатор теряет резонансные свойства, поскольку число возможных типов колебаний становится настолько большим, что они перекрываются.

Отсутствие боковых стенок значительно уменьшает число возможных типов колебаний (мод) за счет того, что волны, распространяющиеся под углом к оси резонатора, быстро уходят за его пределы, и позволяет сохранить резонансные свойства резонатора при L >> ?. Однако резонатор в лазере не только обеспечивает обратную связь за счет возврата отраженного от зеркал излучения в активное вещество, но и определяет спектр излучения лазера, его энергетические характеристики, направленность излучения.
В простейшем приближении плоской волны условие резонанса в резонаторе с плоскими зеркалами заключается в том, что на длине резонатора укладывается целое число полуволн: L=q(?/2) (q - целое число), что приводит к выражению для частоты типа колебаний с индексом q: ?q=q(C/2L). В результате спектр излучения Л., как правило, представляет собой набор узких спектральных линий, интервалы между которыми одинаковы и равны c/2L. Число линий (компонент) при заданной длине L зависит от свойств активной среды, т. е. от спектра спонтанного излучения на используемом квантовом переходе и может достигать нескольких десятков и сотен. При определённых условиях оказывается возможным выделить одну спектральную компоненту, т. е. осуществить одномодовый режим генерации. Спектральная ширина каждой из компонент определяется потерями энергии в резонаторе и, в первую очередь, пропусканием и поглощением света зеркалами.

Частотный профиль коэффициента усиления в рабочем веществе (он определяется шириной и формой линии рабочего вещества) и набор собственных частот открытого резонатора. Для используемых в лазерах открытых резонаторов с высокой добротностью полоса пропускания резонатора??p, определяющая ширину резонансных кривых отдельных мод, и даже расстояние между соседними модами??h оказываются меньше, чем ширина линии усиления??h, причем даже в газовых лазерах, где уширение линий наименьшее. Поэтому в контур усиления попадает несколько типов колебаний резонатора.


Таким образом, лазер не обязательно генерирует на одной частоте, чаще наоборот, генерация происходит одновременно на нескольких типах колебаний, для которых усиление? больше потерь в резонаторе. Для того чтобы лазер работал на одной частоте (в одночастотном режиме), необходимо, как правило, принимать специальные меры (например, увеличить потери, как это показано на рисунке 3) или изменить расстояние между зеркалами так, чтобы и в контур усиления попадала только одна мода. Поскольку в оптике, как отмечено выше, ?h > ?p и частота генерации в лазере определяется в основном частотой резонатора, то, чтобы держать стабильной частоту генерации, необходимо стабилизировать резонатор. Итак, если коэффициент усиления в рабочем веществе перекрывает потери в резонаторе для определенных типов колебаний, на них возникает генерация. Затравкой для ее возникновения являются, как и в любом генераторе, шумы, представляющие в лазерах спонтанное излучение.
Для того, чтобы активная среда излучала когерентный монохроматический свет, необходимо ввести обратную связь, т. е. часть излученного этой средой светового потока направить обратно в среду для осуществления вынужденного излучения. Положительная обратная связь осуществляется при помощи оптических резонаторов, которые в элементарном варианте представляют собой два соосно (параллельно и по одной оси) расположенных зеркала, одно из которых полупрозрачное, а другое - «глухое», т. е. полностью отражает световой поток. Рабочее вещество (активная среда), в котором создана инверсная заселенность, располагают между зеркалами. Вынужденное излучение проходит через активную среду, усиливается, отражается от зеркала, вновь проходит через среду и еще более усиливается. Через полупрозрачное зеркало часть излучения испускается во внешнюю среду, а часть отражается обратно в среду и снова усиливается. При определенных условиях поток фотонов внутри рабочего вещества начнет лавинообразно нарастать, начнется генерация монохроматического когерентного света.

Принцип работы оптического резонатора, преобладающее количество частиц рабочего вещества, представленные светлыми кружками, находятся в основном состоянии, т. е. на нижнем энергетическом уровне. Лишь небольшое количество частиц, представленные темными кружками, находятся в электронно-возбужденном состоянии. При воздействии на рабочее вещество источником накачки основное количество частиц переходит в возбужденное состояние (возросло количество темных кружков), создана инверсная заселенность. Далее (рис. 2в) происходит спонтанное излучение некоторых частиц, находящихся в электронно-возбужденном состоянии. Излучение, направленное под углом к оси резонатора, покинет рабочее вещество и резонатор. Излучение, которое направлено вдоль оси резонатора, подойдет к зеркальной поверхности.

У полупрозрачного зеркала часть излучения пройдет сквозь него в окружающую среду, а часть отразится и снова направится в рабочее вещество, вовлекая в процесс вынужденного излучения частицы, находящиеся в возбужденном состоянии.

У «глухого» зеркала весь лучевой поток отразится и вновь пройдет рабочее вещество, индуцируя излучение всех оставшихся возбужденных частиц, где отражена ситуация, когда все возбужденные частицы отдали свою запасенную энергию, а на выходе резонатора, на стороне полупрозрачного зеркала образовался мощный поток индуцированного излучения.

Основные конструктивные элементы лазеров включают в себя рабочее вещество с определенными энергетическими уровнями составляющих их атомов и молекул, источник накачки, создающий инверсную заселенность в рабочем веществе, и оптический резонатор. Существует большое количество различных лазеров, однако все они имеют одну и ту же и притом простую принципиальную схему устройства, которая представлена на рис. 3.

Исключение составляют полупроводниковые лазеры из-за своей специфичности, поскольку у них всё особенное: и физика процессов, и методы накачки, и конструкция. Полупроводники представляют собой кристаллические образования. В отдельном атоме энергия электрона принимает строго определенные дискретные значения, и поэтому энергетические состояния электрона в атоме описываются на языке уровней. В кристалле полупроводника энергетические уровни образуют энергетические зоны. В чистом, не содержащем каких-либо примесей полупроводнике имеются две зоны: так называемая валентная зона и расположенная над ней (по шкале энергий) зона проводимости.


Между ними имеется промежуток запрещенных значений энергии, который называется запрещенной зоной. При температуре полупроводника, равной абсолютному нулю, валентная зона должна быть полностью заполнена электронами, а зона проводимости должна быть пустой. В реальных условиях температура всегда выше абсолютного нуля. Но повышение температуры приводит к тепловому возбуждению электронов, часть из них перескакивает из валентной зоны в зону проводимости.

В результате этого процесса в зоне проводимости появляется некоторое (относительно небольшое) количество электронов, а в валентной зоне до ее полного заполнения будет не хватать соответствующего количества электронов. Электронная вакансия в валентной зоне представляется положительно заряженной частицей, которая именуется дыркой. Квантовый переход электрона через запрещенную зону снизу вверх рассматривается как процесс генерации электронно-дырочной пары, при этом электроны сосредоточены у нижнего края зоны проводимости, а дырки - у верхнего края валентной зоны. Переходы через запрещенную зону возможны не только снизу вверх, но и сверху вниз. Такой процесс называется рекомбинацией электрона и дырки.

При облучении чистого полупроводника светом, энергия фотонов которого несколько превышает ширину запрещенной зоны, в кристалле полупроводника могут совершаться три типа взаимодействия света с.веществом: поглощение, спонтанное испускание и вынужденное испускание света. Первый тип взаимодействия возможен при поглощении фотона электроном, находящимся вблизи верхнего края валентной зоны. При этом энергетическая мощность электрона станет достаточной для преодоления запрещенной зоны, и он совершит квантовый переход в зону проводимости. Спонтанное испускание света возможно при самопроизвольном возвращении электрона из зоны проводимости в валентную зону с испусканием кванта энергии - фотона. Внешнее излучение может инициировать переход в валентную зону электрона, находящегося вблизи нижнего края зоны проводимости. Результатом этого, третьего типа взаимодействия света с веществом полупроводника будет рождение вторичного фотона, идентичного по своим параметрам и направлению движения фотону, инициировавшему переход.


Для генерации лазерного излучения необходимо создать в полупроводнике инверсную заселенность «рабочих уровней» - создать достаточно высокую концентрацию электронов у нижнего края зоны проводимости и соответственно высокую концентрацию дырок у края валентной зоны. Для этих целей в чистых полупроводниковых лазерах обычно применяют накачку потоком электронов.

Зеркалами резонатора являются отполированные грани кристалла полупроводника. Недостатком таких лазеров является то, что многие полупроводниковые материалы генерируют лазерное излучение лишь при очень низких температурах, а бомбардировка кристаллов полупроводников потоком электронов вызывает его сильное нагревание. Это требует наличия дополнительных охладительных устройств, что усложняет конструкцию аппарата и увеличивает его габариты.

Свойства полупроводников с примесями существенно отличаются от свойств беспримесных, чистых полупроводников. Это обусловлено тем, что атомы одних примесей легко отдают в зону проводимости по одному из своих электронов. Эти примеси называются донорными, а полупроводник с такими примесями - п-полупро- водником. Атомы других примесей, напротив, захватывают по одному электрону из валентной зоны, и такие примеси являются акцепторными, а полупроводник с такими примесями - р-полу- проводником. Энергетический уровень примесных атомов располагается внутри запрещенной зоны: у «-полупроводников - недалеко от нижнего края зоны проводимости, у /^-полупроводников - вблизи верхнего края валентной зоны.

Если в этой области создать электрическое напряжение так, чтобы со стороны р-полупроводника был положительный полюс, а со стороны п-полупроводника отрицательный, то под действием электрического поля электроны из п-полупроводника и дырки из /^-полупроводника будут перемещаться (инжектироваться) в область р-п - перехода.

При рекомбинации электронов и дырок будут испускаться фотоны, а при наличии оптического резонатора возможна генерация лазерного излучения.

Зеркалами оптического резонатора являются отполированные грани кристалла полупроводника, ориентированные перпендикулярно плоскости р-п - перехода. Такие лазеры отличаются миниатюрностью, поскольку размеры полупроводникового активного элемента могут составлять около 1 мм.

В зависимости от рассматриваемого признака все лазеры подразделяются следующим образом).

Первый признак. Принято различать лазерные усилители и генераторы. В усилителях на входе подается слабое лазерное излучение, а на выходе оно соответственно усиливается. В генераторах нет внешнего излучения, оно возникает в рабочем веществе за счет его возбуждения с помощью различных источников накачки. Все медицинские лазерные аппараты являются генераторами.

Второй признак - физическое состояние рабочего вещества. В соответствии с этим лазеры подразделяются на твердотельные (рубиновые, сапфировые и др.), газовые (гелий-неоновые, гелий- кадмиевые, аргоновые, углекислотные и др.), жидкосные (жидкий диэлектрик с примесными рабочими атомами редкоземельных металлов) и полупроводниковые (арсенид-галлиевые, арсенид-фосфид- галлиевые, селенид-свинцовые и др.).

Способ возбуждения рабочего вещества является третьим отличительным признаком лазеров. В зависимости от источника возбуждения различают лазеры с оптической накачкой, с накачкой за счет газового разряда, электронного возбуждения, инжекции носителей заряда, с тепловой, химической накачкой и некоторые другие.

Спектр излучения лазера является следующим признаком классификации. Если излучение сосредоточено в узком интервале длин волн, то принято считать лазер монохроматичным и в его технических данных указывается конкретная длина волны; если в широком интервале, то следует считать лазер широкополосным и указывается диапазон длин волн.

По характеру излучаемой энергии различают импульсные лазеры и лазеры с непрерывным излучением. Не следует смешивать понятия импульсный лазер и лазер с частотной модуляцией непрерывного излучения, поскольку во втором случае мы получаем по сути дела прерывистое излучение различной частоты. Импульсные лазеры обладают большой мощностью в одиночном импульсе, достигающие 10 Вт, тогда как их среднеимпульсная мощность, определяемая по соответствующим формулам, сравнительно невелика. У непрерывных лазеров с частотной модуляцией мощность в так называемом импульсе ниже мощности непрерывного излучения.

По средней выходной мощности излучения (следующий признак классификации) лазеры подразделяются на:

· высокоэнергетические (создаваемая плотность потока мощность излучения на поверхности объекта или биообъекта - свыше 10 Вт/см2);

· среднеэнергетические (создаваемая плотность потока мощность излучения - от 0,4 до 10 Вт/см2);

· низкоэнергетические (создаваемая плотность потока мощность излучения - менее 0,4 Вт/см2).

· мягкое (создаваемая энергетическая облученность - Е или плотность потока мощности на облучаемой поверхности - до 4 мВт/см2);

· среднее (Е - от 4 до 30 мВт/см2);

· жесткое (Е - более 30 мВт/см2).

В соответствии с «Санитарными нормами и правилами устройства и эксплуатации лазеров № 5804-91» по степени опасности генерируемого излучения для обслуживающего персонала лазеры подразделяются на четыре класса.

К лазерам первого класса относятся такие технические устройства, выходное коллиминированное (заключенное в ограниченном телесном угле) излучение которых не представляет опасность при облучении глаз и кожи человека.

Лазеры второго класса - это устройства, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным излучением.

Лазеры третьего класса - это устройства, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности, и (или) при облучении кожи прямым и зеркально отраженным излучением.

Лазеры четвертого класса - это устройства, выходное излучение которых представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности.

Кто в детстве не мечтал о лазере ? Некоторые мужчины мечтают до сих пор. Обычные лазерные указки с маленькой мощностью уже давно не актуальны, так как их мощность оставляет желать лучшего. Остается 2 пути: купить дорогостоящий лазер или сделать его в домашних условиях из подручных средств.

  • Из старого или сломанного DVD привода
  • Из компьютерной мыши и фонарика
  • Из комплекта деталей, купленных в магазине электроники

Как сделать лазер в домашних условиях из старого DVD привода


  1. Найдите нерабочий или ненужный DVD привод, имеющий функцию записи со скоростью записи выше 16x, которые выдают мощность более 160 мВт. Почему нельзя взять пишущий CD, спросите вы. Дело в том, что его диод излучает инфракрасный свет, не видимый человеческим глазом.
  2. Извлеките лазерную головку из привода. Для доступа к “внутренностям” открутите винты, находящиеся на нижней части привода и извлеките лазерную головку, которая также удерживается с помощью винтов. Она может находиться в оболочке или под прозрачным окошком, а может и вовсе снаружи. Самое сложное – извлечь из нее сам диод. Внимание: диод очень чувствителен к статическому электричеству.
  3. Добудьте линзу, без которой использование диода будет невозможно. Можно использовать обычное увеличительное стекло, но тогда каждый раз его придется крутить и настраивать. Или можно приобрести другой диод в комплекте с линзой, а потом заменить его на диод, извлеченный из привода.
  4. Дальше придется купить или собрать схему для питания диода и собрать конструкцию воедино. В диоде DVD привода в качестве отрицательного вывода выступает центральный контакт.
  5. Подключите подходящий источник питания и сфокусируйте линзу. Осталось только найти подходящий контейнер для лазера. Можно для этих целей использовать металлический фонарик, подходящий по размеру.
  6. Рекомендуем посмотреть этот ролик, где все показано очень подробно:

Как сделать лазер из компьютерной мыши

Мощность лазера, сделанного из компьютерной мышки будет намного меньше, чем мощность лазера, изготовленного предыдущим способом. Процедура изготовления не сильно различается.


  1. Первым делом найдите старую или ненужную мышь с видимым лазером любого цвета. Мышки с невидимым свечением не подойдут по понятным причинам.
  2. Далее аккуратно разберите ее. Внутри заметите лазер, который придется отпаивать с помощью паяльника
  3. Теперь повторите пункты 3-5 из вышеописанной инструкции. Различие таких лазеров, повторимся, только в мощности.

Лазерная указка - полезный предмет, предназначение которого зависит от мощности. Если она не очень велика, то луч можно наводить на удаленные предметы. В этом случае указка может играть роль игрушки и использоваться для развлечения. Она же может нести и практическую пользу, помогая человеку показывать на тот объект, о котором он говорит. Используя подручные предметы, можно изготовить лазер своими руками.

Кратко об устройстве

Лазер был изобретен в результате проверки теоретических предположений ученых, занимающихся еще только начавшей тогда зарождаться квантовой физикой. Принцип, положенный в основу лазерной указки, был предсказан Эйнштейном еще вначале XX в. Недаром это приспособление так называется - «указка».

Более мощные лазеры используются для выжигания. Указка дает возможность реализовать творческий потенциал , например, с их помощью можно выгравировать на дереве или на оргстекле красивый качественный узор. Самые мощные лазеры могут разрезать металл, поэтому они применяются в строительных и ремонтных работах.

Принцип действия лазерной указки

По принципу действия лазер представляет собой генератор фотонов. Суть явления, которое лежит в его основе, состоит в том, что на атом оказывает воздействие энергия в виде фотона. В результате этот атом излучает следующий фотон, который движется в том же направлении, что и предыдущий. Эти фотоны имеют одну и ту же фазу и поляризацию. Разумеется, излучаемый свет в этом случае усиливается. Такое явление может произойти только в отсутствии термодинамического равновесия. Чтобы создать индуцированное излучение, применяют разные способы: химические, электрические, газовые и другие.

Само слово «лазер» возникло не на пустом месте. Оно образовалось в результате сокращения слов, описывающих суть процесса. На английском полное название этого процесса звучит так: «light amplification by stimulated emission of radiation», что на русский переводится как «усиление света посредством вынужденного излучения». Если говорить по-научному, то лазерная указка - это оптический квантовый генератор .

Подготовка к изготовлению

Как говорилось выше, можно сделать лазер своими руками в домашних условиях. Для этого следует подготовить следующие инструменты, а также простые предметы, которые практически всегда имеются в домашнем обиходе:

Этих материалов хватит, чтобы выполнить все работы по изготовлению как простого, так и мощного лазера своими руками.

Самостоятельная сборка лазера

Потребуется найти дисковод. Главное, чтобы его лазерный диод был исправен. Конечно, дома такого предмета может и не быть. В этом случае его можно приобрести у тех, у кого он есть. Зачастую люди выбрасывают оптические приводы, даже если их лазерный диод еще работает или продают их.

Выбирая привод для изготовления лазерного устройства, нужно обращать внимание на фирму, в которой он был выпущен . Главное, чтобы этой фирмой не была Samsung: приводы от этого производителя оснащены диодами, которые не имеют защиту от наружного воздействия. Следовательно, такие диоды быстро загрязняются и подвергаются тепловым нагрузкам. Они могут быть повреждены даже в результате легкого прикосновения.

Лучше всего для изготовления лазера подходят приводы от компании LG: каждая их модель оснащается мощным кристаллом.

Важно, чтобы привод при использовании по прямому назначению мог не только считывать, но и записывать информацию на диск. В записывающих принтерах есть инфракрасный излучатель, необходимый для сборки лазерного устройства.

Работа заключена в следующих действиях:

Готовая лазерная указка, сделанная своими руками, может с легкостью разрезать целлофановые пакеты и моментально взрывать воздушные шары. Если же навести этот самодельный прибор на деревянную поверхность, то луч сию же минуту прожжет ее. При использовании необходимо соблюдать меры осторожности.

Лазерные указки являются портативными приборами, в которых имеются излучатели, генерирующие волны электромагнитного когерентного и монохроматического происхождения в видимом диапазоне в лучевой форме. Излучателями могут выступать лазерные диоды, либо полноценные твердотельные лазеры.

Имеется несколько видов лазерных указок, которые отличаются типами излучателей и бывают таких цветов:

  • Красных;
  • Зеленых;
  • Синих;
  • Бирюзовых;
  • Голубых;
  • Фиолетовых;
  • Желтых;
  • Оранжевых.

ЛУ красного цвета

Эти ЛУ являются самыми дешевыми и самыми распространенными. Работают от обычной батареи таблеточного типа, на базе красных лазерных диодов со спектром излучения 650-660 нм. Они оснащены драйверными платами, управляющими питанием. Для излучения в форме узкого луча используются выпуклые с обеих сторон линзы, называемые коллиматорами.

Красные ЛУ в основном маломощные до 1-100 мВт. Их характерной особенностью является то, что красные диоды довольно-таки скоро «прогорают», снижая интенсивность излучения, отчего большинство таких указок, спустя пару месяцев работы, начинают хуже светить, невзирая на заряд батареек.

ЛУ зеленого цвета (green laser)

Днем человеческий глаз более чувствителен к зеленым цветам, чем к красным (где-то в 6-10 раз). Благодаря этому green laser светит более ярко. Однако в ночи все происходит наоборот.

Зеленые лазерные диоды чрезвычайно дорогостоящие, поэтому для создания green laser используют твердотелые лазеры с диодами. Они не такие дорогие как зеленые лазерные диоды, но ценнее, чем красные. Длина волны green laser - 532 нм, с КПД приблизительно 20%. Зеленые ЛУ энергозатратнее красных, вследствие этого трудно подбирать агрегаты, питающиеся от таблеточных батарей.

ЛУ синего цвета

Начали выпускаться с 2006 года, схема действия схожа с green laser. Длина волны голубая- 490 нм, бирюзовая - 473 нм, а синяя - 445 нм. Излучателем является твердотелый мощный лазер. Синие ЛУ весьма дорогостоящие, диоды не такие дорогие, но не имеют широкого распространения. Излучение ЛУ синего цвета крайне опасно для глаз. КПД приблизительно 3%.

ЛУ желтого цвета

Длина волны желтых ЛУ - 593.5 нм. Имеются также их оранжевые «коллеги» с длиной волны 635 нм. КПД – чуть более 1%.

ЛУ фиолетового цвета

ЛУ с фиолетовыми лазерными диодам имеют длину волны 400-410 нм. Это почти предел в диапазоне, который воспринимает человеческий глаз, поэтому это свет видится как тусклый.

Свет фиолетовых ЛУ вызывает флуоресценцию, и яркость светящихся объектов становится интенсивнее, чем в самом лазере. В серию ЛУ пошли с появлением привода для оптического носителя Blu-ray, в котором применили лазерный диод с длиной волны соответственного излучения.

ЛУ: применение

  • ЛУ часто пользуются образовательные учреждения, например для физических экспериментов, а также для презентаций;
  • Световая точка, которую образует лазерный луч, привлекает внимание домашних животных. Особенно на них реагируют кошки и собаки, что зачастую приводит людей к играм с этими домашними питомцами;
  • Зелеными ЛУ пользуются как в любительских, так и в профессиональных астрономических исследованиях. Зеленые ЛУ используются для определения направлений звезд и созвездий;
  • ЛУ применяются в качестве лазерных целеуказателей, для точного прицеливания огнестрельного или пневматического оружия;
  • ЛУ применяются радиолюбителями, как элемент связи в видимых границах;
  • Красные ЛУ с отсоединенными коллиматорами пользуется при создании любительских голографий;
  • Лабораторная практика пользуется ЛУ (особенно зелеными) для выявления в жидкостях, газах или любых прозрачных веществах в малых количествах примесей или взвесей механического происхождения, которые незаметны для невооруженного глаза.

Безопасность лазеров

Лазерное излучение опасно при попадании в глаза.

Обыкновенные ЛУ обладают мощностью 1-5 мВт, их относят ко 2-3А классам опасности. Они могут быть опасными, в случаях направления луча в глаза людям на довольно-таки продолжительные периоды или при помощи оптических приборов. ЛУ мощностью 50-300 мВт относят к 3B-классу. Они опасны причинением сильных повреждений сетчатки глаз, причем даже при кратковременных попаданиях прямого лазерного луча.

Следует знать, что в маломощных зеленых DPSS-указках используются значительно мощные ИК-лазеры, которые не гарантируют достаточную фильтрацию ИК-излучений. Такие виды излучений не видимы и в результате этого куда более опасны для глаз людей и животных.

Кроме того, ЛУ могут оказывать исключительно раздражающие воздействия. Особенно, если луч попадет в глаза водителей или летчиков, что может отвлечь их внимание или даже привести к ослеплению. В некоторых странах такие деяния влекут за собой уголовную ответственность. Например, в 2019-ом году одного американца приговорили к почти двум годам тюремного заключения за непродолжительное ослепление мощным лазером летчика в полицейском вертолете.

В последние годы случается все больше многочисленных «лазерных инцидентов» в развитых странах, вызываемых требованиями по ограничению или запрещению ЛУ. В настоящее время законодательством Нового Южного Уэльса предусмотрен штраф за владение ЛУ, а за совершение «лазерного нападения» - заключение до 14-ти лет.

Применение ЛУ запрещено по правилам во время проведения футбольных матчей. Так, например Алжирская федерация футбола была оштрафована на 50 000 швейцарских франков за то, что болельщиками при помощи лазерной указки ослепили вратаря российской сборной Игоря Акинфеева во время ЧМ-2014.

Самая мощная лазерная указка

Не так давно стало известно о появлении самого мощного карманного лазера, «короля» ЛУ или «меча джедая». Небольшой мощный лазер может прожигать тонкие пластмассы, взрывать детские шарики, поджигать бумагу и ослеплять людей. Устройство китайского производителя Wicked Lasers лишь бегло напоминает популярные ЛУ, но имеет более крупный корпус.

Часто лазерная указка с крошечным цилиндриком, выдающая красный лазерный луч, используется детьми для игр или для презентаций в школе. Однако указатель новой генерации компании Wicked Lasers для детей не будет игрушкой. И это не случайно, ведь выходная мощность китайской лазерной указки в десятки и сотни раз значительнее, чем у обычных недорогих ЛУ.

Удивительно, что китайская «зеленая супермодель» с мощностью луча от 0,3 ватт достигает «дальности воздействия» до 193-х километров.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Многие технические изобретения человек почерпнул, наблюдая за природными явлениями, анализируя их и применяя полученные знания в окружающей реальности. Так человек получил способность разжигать огонь, создал колесо, научился генерировать электричество, получил контроль над ядерной реакцией.

В отличие от всех этих изобретений лазер не имеет аналогов в природе. Его возникновение было связано исключительно с теоретическими предположениями в рамках зарождающейся квантовой физики. Существование принципа, который лег в основу лазера, было предсказано в начале ХХ в величайшим ученым Альбертом Эйнштейном.

Слово «лазер» появилось в результате сокращения пяти слов, описывающих сущность физического процесса, до первых букв. В русском варианте этот процесс называется «усилением света с помощью индуцированного излучения».

По принципу своей работы лазер является квантовым генератором фотонов. Суть явления, лежащего в его основе, заключается в том, что под действием энергии в виде фотона атом излучает другой фотон, который идентичен первому по направлению движения, своей фазе и поляризации. В результате излученный свет усиливается.

Данное явление невозможно в условиях термодинамического равновесия. Для создания индуцированного излучения используют различные способы: электрические, химические, газовые и другие. Лазеры, используемые в бытовых условиях (лазерные дисковые приводы, лазерные принтеры) используют полупроводниковый способ стимуляции излучения под действием электрического тока.

Принцип работы заключается в прохождении потока воздуха через нагреватель в трубку термофена и, достигнув установленных температур, попадании через специальные насадки на паяемую деталь.

При возникновении неисправностей сварочный инвертор можно починить своими руками. Советы по ремонту можно прочитать .

Кроме того, необходимым компонентом любого полноценного лазера является оптический резонатор , функция которого заключается в усилении пучка света путем его многократного отражения. С этой целью в лазерных установках используются зеркала.

Следует сказать, что создать настоящий мощный лазер своими руками в домашних условиях нереально. Для этого необходимо обладать специальными знаниями, проводить сложные расчеты, иметь хорошую материально-техническую базу.

Например, лазерные установки, которые могут резать металл, чрезвычайно нагреваются и требуют экстремальных мер охлаждения, включающих использование жидкого азота. Кроме того, устройства, работающие на основе квантового принципа, крайне капризны, требуют тончайшей настройки и не терпят даже малейших отклонений от нужных параметров.

Необходимые компоненты для сборки

Для сборки схемы лазера своими руками потребуется:

  • DVD-ROM с функцией перезаписи (RW). Имеет в своем составе красный лазерный диод мощностью 300 мВт. Можно использовать лазерные диоды из BLU-RAY-ROM-RW – они излучают фиолетовый свет мощностью 150 мВт. Для наших целей лучшие ROM’ы – это те, которые имеют большую скорость записи: они более мощные.
  • Импульсный NCP1529. Преобразователь выдает ток силой 1А, стабилизирует напряжение в диапазоне 0,9-3,9 В. Эти показатели являются идеальными для нашего лазерного диода, который требует постоянного напряжения в 3 В.
  • Коллиматор для получения ровного пучка света. Сейчас в продаже представлены многочисленные лазерные модули от различных производителей, в том числе и коллиматоры.
  • Выходная линза из ROM.
  • Корпус, например, от лазерной указки или фонарика.
  • Провода.
  • Батарейки 3,6 В.

Для соединения деталей потребуется . Кроме того, потребуются отвертка и пинцет.

Как сделать лазер из дисковода?

Порядок сборки простейшего лазера состоит из следующих этапов.


Сделать совсем не сложно. Разница в количестве контактов. В проходном выключателе, в отличие от простого, три контакта вместо двух.

Таким образом можно собрать наиболее простой лазер. Что может делать такой кустарно изготовленный «усилитель света»:

  • Зажигать спичку на расстоянии.
  • Плавить полиэтиленовые пакеты и тонкую бумагу.
  • Испускать луч на расстояние более 100 метров.

Такой лазер представляет опасность: он не прожжет кожу или одежду, но может повредить глаза.

Поэтому пользоваться таким устройством нужно осторожно: не светить им в отражающие поверхности (зеркала, стекла, светоотражатели) и в целом быть предельно аккуратным – луч может причинить вред, попав в глаз даже с расстояния в сто метров.

Лазер своими руками на видео



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows