Расстояние до орбиты спутников. Геостационарная орбита (ГСО)

Расстояние до орбиты спутников. Геостационарная орбита (ГСО)

02.07.2019

Большинство космических полётов выполняется не по круговым, а по эллиптическим орбитам, высота которых меняется в зависимости от местоположения над Землёй. Высота так называемой «низкой опорной» орбиты, от которой «отталкивается» большинство космических кораблей, равна примерно 200 километрам над уровнем моря. Если быть точным, перигей такой орбиты равен 193 километрам, а апогей составляет 220 километров. Однако на опорной орбите имеется большое количество мусора, оставленного за полвека освоения космоса, поэтому современные космические корабли, включив свои двигатели, перебираются на более высокую орбиту. Так, например, Международная Космическая Станция (МКС ) в 2017 году вращалась на высоте порядка 417 километров , то есть в два раза выше опорной орбиты.

Высота орбиты большинства космиечских кораблей зависит от массы корабля, места его запуска и мощности его двигателей. У космонавтов она варьируется от 150 до 500 километров. Так, например, Юрий Гагарин летел на орбите с перигеем в 175 км и апогеем в 320 км. Второй советский космонавт Герман Титов летел на орбите с перигеем в 183 км и апогеем в 244 км. Американские «челноки» летали на орбитах высотой от 400 до 500 километров . Примерно такая же высота и у всех современных кораблей, доставляющих людей и грузы на МКС.

В отличие от пилотируемых космических кораблей, которым надо вернуть космонавтов на Землю, искусственные спутники летают на гораздо более высоких орбитах. Высота орбиты спутника, вращающегося на геостационарной орбите, может быть рассчитана, опираясь на данные о массе и диаметре Земли. В результате нехитрых физических расчетов можно выяснить, что высота геостационарной орбиты , то есть такой, при которой спутник «зависает» над одной точкой на поверхности земли, равна 35 786 километрам . Это очень большое удаление от Земли, поэтому время обмена сигналом с таким спутником может достигать 0,5 секунд, что делает его непригодным, например, для обслуживания онлайн-игр.

Сегодня 18 марта 2019 года. А вы знаете, какой сегодня праздник ?



Расскажите Какова высота орбиты полёта космонавтов и спутников друзьям в социальных сетях:

На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и, перейдя в систему отсчета спутника, исходить из следующего уравнения:

где – сила инерции, а в данном случае, центробежная сила;– гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона:

где – масса спутника,– масса Земли в килограммах,– гравитационная постоянная, а– радиус орбиты (расстояние в метрах от спутника до центра Земли).

Величина центробежной силы равна:

где – центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника присутствует в выражениях и для центробежной силы, и для гравитационной силы. То есть, высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы. Следовательно, геостационарная орбита определяется лишь высотой, при которой центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

где – угловая скорость вращения спутника, в радианах в секунду.

Исходя из равенства гравитационной и центробежной сил, получаем:

Угловая скорость ω вычисляется делением угла, пройденного за один оборот на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день, или 86 164 секунды). Получаем:рад/с

Расчетный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту ГСО 35 786 км.

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты: км/с

Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с для околоземной орбиты (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу, то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км. Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите.Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т.д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырёх точек стабильного равновесия, так называемых «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального =0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10-15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45-50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12-15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную систему подачи топлива (газ наддува – гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и азотный тетраксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше, чем у химических, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях – как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток». Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

Весьма популярной спутниковой орбитой является геостационарная орбита. Она используется для размещения спутников многих типов, включая спутники, ведущие прямое телерадиовещание, спутники, обеспечивающие связь, а также релейные системы.

Преимуществом геостационарной орбиты является то, что спутник, находящийся на ней, постоянно располагается в одной и той же позиции, что позволяет направлять на него фиксированную антенну наземной станции.

Читайте также:

Этот фактор является чрезвычайно важным для организации таких систем, как прямое телерадиовещание через спутник, где использование постоянно движущейся антенны, следующей за спутником, было бы крайне непрактичным.

Необходимо внимательно относиться к использованию сокращений, принятых для обозначения геостационарной орбиты. Мы можем встретить аббревиатуры GEO и GSO, и обе они используются для обозначения как геостационарной, так и геосинхронной орбиты.

Развитие геостационарных орбит

Идеи относительно возможности использования геостационарной орбиты для размещения на ней спутников выдвигались на протяжении многих лет. В качестве возможного автора положений, лежащих в основе данной идеи, часто называют российского теоретика и научного фантаста Константина Циолковского. Однако впервые о возможности размещения космических аппаратов на высоте 35 900 километров над Землёй с периодом обращения в 24 часа, дающим им возможность «парить» в одной точке над экватором, написали Герман Оберт и Герман Поточник.

Следующий важный шаг на пути к рождению Геостационарной орбиты был сделан в октябре 1945 года, когда научный фантаст Артур Чарльз Кларк написал серьёзную статью для Wireless World – ведущего британского издания в области радио и электроники. Статья была озаглавлена как «Внеземная релейная связь: смогут ли космические ракеты обеспечить охват сигналом всего мира?».

Кларк попытался экстраполировать то, что уже было возможно благодаря использованию существующих на тот момент ракетных технологий, разработанных немецкими учёными, на то, что могло бы стать возможным в будущем. Он высказал мысль о возможности покрытия сигналом всей Земли при использовании всего трёх геостационарных спутников.

В своей статье Кларк указал необходимые характеристики орбиты, а также уровни мощности передатчиков, возможности выработки электроэнергии при помощи солнечных батарей и даже рассчитал возможное влияние солнечных затмений.

Статья Кларка значительно опережала время. Лишь в 1963 году агентство NASA смогло запустить в космос спутники, способные проверить данную теорию на практике. Первым полноценным спутником, способным начать практические испытания теории Кларка, стал спутник Syncom 2, запущенный 26 июля 1963 года (по правде говоря, спутник Syncom 2 не смог этого сделать, поскольку его не удалось доставить на необходимую геостационарную орбиту).

Основы теории Геостационарной орбиты

С увеличением высоты орбиты, на которой находится спутник, увеличивается и период его обращения по данной орбите. На высоте 35 790 километров над Землёй спутнику требуется 24 часа для полного витка вокруг планеты. Такая орбита известна как геосинхронная, так как она синхронизирована с периодом обращения Земли вокруг своей оси.

Частным случаем геосинхронной орбиты является геостационарная орбита. При использовании такой орбиты направление движения спутника вокруг Земли соответствует направлению вращения самой планеты, а период обращения космического аппарата примерно равен 24 часам. Это значит, что спутник вращается с той же угловой скоростью, что и Земля, в том же направлении и, стало быть, постоянно находится в одной и той же точке относительно поверхности планеты.

Читайте также:

Чтобы гарантировать то, что спутник обращается вокруг Земли с той же скоростью, с которой обращается вокруг своей оси сама планета, необходимо чётко уяснить – каков же на самом деле период обращения Земли вокруг своей оси. Большинство хронометражных устройств измеряет обращение Земли относительно текущего положения Солнца, а вращение Земли вокруг своей оси в сочетании с её вращением вокруг Солнца даёт продолжительность дня. Однако это совсем не тот период обращения Земли, который интересует нас с точки зрения расчета геостационарной орбиты – время, необходимое для одного полного обращения. Этот отрезок времени известен как «звёздные сутки», продолжительность которых составляет 23 часа 56 минут и 4 секунды.

Законы геометрии говорят нам о том, что единственный вариант для того, чтобы, делая один виток в сутки, спутник всегда оставался над одной точкой земной поверхности, состоит в его обращении в том же направлении, в котором вращается сама Земля. Кроме того, спутник не должен смещаться на своей орбите ни на север, ни на юг. Всего этого можно достичь лишь в том случае, если орбита спутника проходит над экватором.

На диаграмме показаны различные типы орбит. Поскольку плоскость любой орбиты должна проходить через центр Земли, на рисунке представлены два возможных варианта. При этом даже если обращение космических аппаратов на обеих орбитах будет осуществляться со скоростями, равными скорости вращения Земли вокруг своей оси, орбита, обозначенная как «геосинхронная», будет полдня смещаться на север относительно экватора, а оставшиеся полдня – на юг и, стало быть, не будет стационарной. Для того, чтобы спутник стал стационарным, он должен располагаться над экватором.

Дрейф на геостационарной орбите

Даже если спутник расположен на геостационарной орбите, на него воздействуют некоторые силы, способные медленно изменять его позицию в течение времени.

Такие факторы, как эллиптическая форма Земли, притяжение Солнца и Луны, а также ряд других увеличивают потенциальную возможность отклонения спутника от своей орбиты. В частности, не совсем круглая форма Земли в районе экватора приводит к тому, что спутник притягивает к двум устойчивым точкам равновесия – одна из них находится над Индийским океаном, а вторая – приблизительно на противоположной части Земли. В результате имеет место явление, получившее название либрации с востока на запад, или движение вперёд и назад.

Для того чтобы преодолеть последствия такого движения, на борту спутника имеется определённый запас топлива, который позволяет ему проводить «поддерживающие манёвры», возвращающие аппарат чётко в необходимую орбитальную позицию. Необходимый промежуток между временем проведения таких «поддерживающих манёвров» определяется в соответствии с так называемым допуском отклонения спутника, который устанавливается, главным образом, с учётом ширины луча антенны наземной станции. Это значит, что при нормальной работе спутника не требуется никакой подстройки антенны.

Читайте также:

Очень часто период активной эксплуатации спутника рассчитывается из количества топлива на его борту, необходимого для поддержания расположения спутника в одной орбитальной позиции. Чаще всего этот период составляет несколько лет. После чего спутник начинает дрейфовать в направлении одной из точек равновесия, после чего возможно его снижение и последующее вхождение в атмосферу Земли. Поэтому желательно использовать последнее имеющееся у него на борту топливо для того, чтобы поднять спутник на более высокую орбиту, дабы избежать его возможного негативного воздействия на работу других космических аппаратов.

Покрытие с геостационарной орбиты

Совершенно очевидным является тот факт, что один геостационарный спутник не способен обеспечить полного покрытия сигналом поверхности Земли. Однако, каждый геостационарный спутник «видит» примерно 42% земной поверхности, при этом охват падает по направлению к спутнику, который не может «видеть» поверхность. Это происходит вокруг экватора и также в направлении полярных регионов.

Расположив на геостационарной орбите группировку из трёх равноудалённых друг от друга спутников, можно обеспечить покрытие сигналом всей поверхности Земли от экватора и вплоть до 81° северной и южной широты.

Отсутствие покрытия в полярных регионах не является проблемой для большинства пользователей, однако при необходимости обеспечения стабильного покрытия полярных широт требуется использования спутников, вращающихся на других орбитах.

Геостационарная орбита
и длина пути сигнала

Одной из проблем, возникающих при использовании спутников, находящихся на геостационарной орбите, является задержка сигнала, вызванная расстоянием, которое он вынужден проделывать.

Минимальное расстояние до любого из геостационарных спутников составляет 35790 км. И это лишь в том случае, если пользователь находится непосредственно под спутником, и сигнал попадает к нему по кратчайшему пути. В действительности же пользователь вряд ли будет находиться точно в данной точке, а стало быть расстояние, которое вынужден будет проделать сигнал, в реальности гораздо больше.

Исходя из длины кратчайшего расстояния от наземной станции до спутника, расчётное минимальное время движения сигнала в одну сторону – то есть, с Земли на спутник или со спутника на Землю – составляет примерно 120 миллисекунд. А это значит, что время полного маршрута сигнала – с Земли на спутник и со спутника назад на Землю – составляет примерно четверть секунды.

Таким образом, для того, чтобы получить ответ в процессе диалога, проходящего через спутник, требуется полсекунды, поскольку сигнал должен пройти через спутник дважды: один раз – в движении в направлении удалённого слушателя, а второй раз назад – с ответом. Эта задержка усложняет телефонные разговоры, для проведения которых используется спутниковый канал связи. Репортёру, получившему вопрос из студии вещания, требуется некоторое время на то, чтобы ответить. Наличие такого эффекта задержки стало причиной того, что многие линии дальней связи используют кабельные каналы вместо спутниковых, ибо задержки в кабеле намного меньшие.

Преимущества и недостатки спутников,
расположенных на геостационарной орбите

Несмотря на то, что геостационарная орбита широко используется на практике для развёртывания различных технологий, она всё же подходит не для всех ситуаций. Размышляя над возможным использованием данной орбиты следует учесть целый ряд её преимуществ и недостатков:

Преимущества Недостатки
  • Спутник постоянно находится в одной точке относительно Земли – соответственно, не требуется перенаправление антенн
  • Сигнал проделывает большее расстояние, а стало быть, наблюдаются большие, в сравнении с LEO или MEO, потери.
  • Стоимость доставки и размещения спутника на GEO-орбиту выше – в силу большей высоты над Землёй.
  • Длинное расстояние от Земли до спутника приводит к задержкам сигнала.
  • Геостационарная спутниковая орбита может пролегать исключительно над экватором, в связи с чем отсутствует покрытие полярных широт.

Однако, несмотря на все имеющиеся недостатки геостационарной орбиты, спутники, расположенные на ней, широко используются во всём мире благодаря главному их преимуществу, которое способно перевесить все недостатки: геостационарный спутник всегда находится в одной орбитальной позиции относительно той или иной точки на Земле.

Геостационарная орбита (рисунок 13.7) ха­рактеризуется тем, что если находящиеся на ней спутники движутся с угловыми скоростями, равными угловой скорости вращения Земли вокруг своей оси, то с поверхности Земли они кажутся неподвижны­ми, «висящими» на одном месте, в одной точке. Так как расстояние от движущегося по геостационарной орбите спутника до Земли в три раза больше диаметра Земли, то спутник «видит» сразу около 40% земной поверхности.

Вывод искусственных спутников на геостационарную орбиту – задача непростая. Раньше для запуска на нее не имелось доста­точно мощных ракетоносителей, поэтому первые спутники связи находились на эллиптической, низкой околоземной орбите (напри­мер, первый американский спутник-ретрансля­тор Telstar).

Рисунок 13.7 - Геостационарная орбита

Поддержание связи со спутниками на эллиптической орбите очень сложное и дорогостоящее дело как в части передачи, так и приема.

Из-за быстрого изменения местоположения спутников необхо­димо иметь подвижную систему следящих антенн. Спутники на та­ких орбитах можно использовать для создания постоянной связи только тогда, когда они по отношению как передающего, так и при­емного устройства находятся над уровнем горизонта, т.е. для них должен быть виден как «восход» одного спутника, так и «заход» другого.

Развитие ракетной техники и создание мощных ракетных носи­телей дали возможность широко использовать геостационарную орбиту для «установки» на ней спутников-ретрансляторов. На рисунке 13.8 показан часто применяемый способ вывода спутников на геостационарную орбиту. Искусственный спутник выводят сначала на круговую орбиту, близкую к поверхно­сти Земли (250...300 км от поверхности), затем, повышая его ско­рость, переводят на эллиптическую промежуточную орбиту, бли­жайшая точка которой – перигей находится примерно на расстоя­нии 270 км от Земли, а удаленная точка – апогей на расстоянии около 36000 км, которая уже соответствует высоте геостационар­ной орбиты*.



Рисунок 13.8 - Последовательность вывода спутника на геостационарную орбиту:

1 - сброс обтекателя; 2 - завершение начального полета; 3 - полное отделение последней ступени; 4 - определение положения для первого включения собствен­ного (апогейного) двигателя; 5 - первое включение собственного двигателя для выхода на промежуточную (переходную) орбиту; 6 - определение положения на промежуточной орбите; 7 - второе включение собственного двигателя для выхода на геостационарную орбиту; 8 - переориентация плоскости орбиты спутника и кор­рекция ошибок; 9 - ориентация спутника перпендикулярно к плоскости орбиты и коррекция ошибок; 10-остановка, раскрытие панелей солнечных батарей, полная расстыковка; 11 - раскрытие антенн, включение стабилизаторов; 12 - стабилизация положения и начало работы



Когда искусственный спутник «станет» на эллиптическую промежуточную (переходную) орбиту, и, если у него все функционирует безупречно, то в точке апогея включаются его собственные реак­тивные, так называемые, апогейные двигатели, которые быстро увеличивают линейную скорость спутника до 3,074 км /с. Такая ско­рость необходима для перехода на геостационарную орбиту и «ос­тановки» (точнее для движения по ней), после чего спутник по командам с Земли перемещают по геостационарной орбите на пла­новую позицию в точку стояния. Затем осуществляют раскрытие панелей солнечных батарей, развертывание антенн, их ориента­цию на заданную территорию Земли, ориентацию солнечных бата­рей на Солнце и включение бортового передатчика-ретранслятора. Точная установка спутника на геостационарной орбите проводится его собственными реактивными двигателями, работающими на твердом или жидком топливе. После того как спутник выведен в точку стояния на орбите, двигатели отключаются и он движется по геостационарной орбите как небесное тело под воздействием инерции со скоростью 3,074 км/с и сил притяжения Земли. Для спутника-ретранслятора очень важно, чтобы его собственная орби­та соответствовала бы идеально геостационарной. Так, если спут­ник движется по орбите, которая несколько меньше геостационар­ной, то он постепенно смещается со своей позиции в западном на­правлении, а если его орбита превышает геостационарную, то смещение происходит в восточном направлении, т. е. по направле­нию движения Земли. Сдвиг на 1° на геостационарной орбите соот­ветствует расстоянию на ней примерно в 750 км. При наличии в наземном приемном устройстве поворотной следящей антенны ее несложно снова точно направить на спутник. Однако большинст­во индивидуальных наземных устройств для приема со спутников имеют неподвижные антенны с очень узкими, «игольчатыми» диа­граммами направленности, и постоянно корректировать направле­ние антенны на спутник ручным способом довольно обременитель­но, а из-за неточности ее наведения принимаемое телевизионное изображение заметно ухудшается или вовсе исчезает. В связи с этим в целях надежного и уверенного приема необходимо обес­печить постоянный во времени «след» спутника, стабильность излу­чения его бортовых антенн только на отведенную территорию. По­этому спутнику нужно часто проводить коррекцию своего положения и орбиты, что осуществляется им при помощи собственных двига­телей и приводит к расходу топлива. Это влияет на его срок служ­бы. При отсутствии топлива для двигателей спутник начинает сме­щаться со своей позиции, что приводит к периодическому сближе­нию соседних спутников и, соответственно, к увеличению взаимных помех, и к увеличению помех приемным устройствам на Земле.

С точки зрения срока функционирования спутника крайне важ­ным является количество топлива, потребляемого его собственны­ми реактивными (апогейными) двигателями. И, очевидно, чем больше останется топлива после первичной установки спутника на орбите, тем больше корректировок положения можно сделать и, следовательно, тем дольше будет функционировать спутник. Про­должительность «жизни» спутника на орбите обычно составляет 5...7 лет, а некоторых - 10 лет и более, после чего он заменяется новым, устанавливаемым на той же позиции.

Преимущества геостационарной орбиты. Геостационарная орбита (в Англии и в некоторых странах Евро­пы ее называют поясом Кларка) является уникальной и представ­ляет значительную эксплуатационную ценность. Ряд экваториаль­ных государств раньше хотели, чтобы участок орбиты, находящий­ся над их территорией, использовался бы только по договоренно­сти с ними. Неэкваториальные страны, естественно, с этим согла­ситься не могли, рассматривая геостационарную орбиту как общее достояние человечества. Лишь в 1988 г. удалось согласовать план распределения позиций спутников для вещания в диапазонах час­тот 6/4 ГГц и 14/11 ГГц.

Преимущества геостационарной орбиты стимулируют все большее количество пользователей размещать на ней спутники различного назначения. С европейского континента можно «наблюдать» несколько десятков искусственных спутников, движущихся на геостационарной орбите. Через них осуществляется в первую очередь телефонная связь со странами американского континента и странами Ближнего Востока. Кроме того, много спутников задействовано для ретрансляции телевизионного и звукового вещания. Использование геостационарной орбиты для этих целей дает следующие преимущества:

§ спутник движется по геостационарной орбите с Запада на Вос­ток длительное время без затрат энергии на это движение (как небесное тело) благодаря гравитационному притяжению Земли и собственной инерции, с линейной скоростью 3,074 км/с;

§ движущийся по геостационарной орбите с угловой скоростью, равной угловой скорости вращения Земли, спутник совершает оборот точно за одни сутки, вследствие чего он оказывается неподвижно «висящим» над земной поверхностью;

§ энергоснабжение его систем осуществляется от солнечных батарей, освещаемых Солнцем;

§ поскольку спутник не пересекает радиационный пояс Земли, а находится выше его, то увеличивается надежность и ресурс работы его электронных устройств и источников питания – солнечных ба­тарей;

§ связь с передающей станцией осуществляется непрерывно, без переключения с одного «заходящего» спутника на другой – «восходящий», т.е. для обеспечения непрерывной постоянной связи необходим только один спутник;

§ в передающих антеннах в системе Земля-Спутник устройства автоматического слежения за спутником могут быть упрощены или исключены вовсе, а в наземных приемных антеннах в них фактически нет необходимости, что обес­печивает простоту приемных устройств, их дешевизну, доступность и массовость рас­пространения;

§ так как расстояние до спутника на геостационарной орбите всегда постоянно, то ослабление сигнала при прохождении по трассе Земля – Спутник – Земля всегда определенное, не изменяющееся при движении спутника по орбите, что позволяет точно рассчитать мощность его бортового передатчика;

§ геостационарная орбита уникальна – спутники, расположенные на орбитах выше ее, «уходят» в космическое пространство, а, расположенные на орбитах ниже, – постепенно приближаются к Земле. И только спутники, находящиеся на геоста­ционарной орбите, синхронно вращаются на постоянном расстоя­нии от Земли и неподвижны относительно нее;

§ после окончания срока функционирования спутник переводит­ся на так называемую «кладбищенскую» орбиту, которая находится на 200 км выше геостационарной, и он постепенно удаляется от Земли в космическое пространство.

Однако орбитальным группировкам, состоящим из геостационарных спутни­ков, присущ один крупный недостаток: большое время распространения радио­сигналов, – что приводит к задержкам передачи сигналов при радиотелефон­ной связи. Ожидание прихода ответного сигнала может вызвать недовольство нетерпеливых абонентов.

Благодаря своим уникальным свойствам и преимуществам геостационарная орбита на наиболее удобных участках (особенно над Тихим и Индийским океанами, а так же над Африканским континентом) «заселена» спутниками до предела. На геостационарной орбите определено 425 точек «стояния» – позиций спутников. Слово «позиция» однозначно определяет положение спутника на геостационарной орбите ­ его долготу.

Точка стояния

,

где - масса спутника, - масса Земли в килограммах , - гравитационная постоянная , а - расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

Величина центробежной силы равна:

,

где - центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы . Следовательно, геостационарная орбита определяется лишь высотой, при которых центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

,

где - угловая скорость вращения спутника, в радианах в секунду.

Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциальной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае - сила гравитации) вызывает центростремительное ускорение. По модулю центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

Уравнивая выражения для гравитационной и центробежной сил с подстановкой центростремительного ускорения, получаем:

.

Сокращая , переводя влево, а вправо, получаем:

.

Можно записать это выражение иначе, заменив на - геоцентрическую гравитационную постоянную:

Угловая скорость вычисляется делением угла, пройденного за один оборот ( радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день , или 86 164 секунды). Получаем:

рад/с

Полученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.

Можно сделать вычисления и иначе. Высота геостационарной орбиты - это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте.

Линейная скорость спутника, движущегося с угловой скоростью на расстоянии от центра вращения равна

Первая космическая скорость на расстоянии от объекта массой равна

Приравняв правые части уравнений друг другу, приходим к полученному ранее выражению радиуса ГСО:

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты:

км/с

Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с на околоземной орбите (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу,

то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырех точек стабильного равновесия, т. н. «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального 0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10-15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45-50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12-15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную подачу топлива (газ наддува-гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и диазотный тетраоксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше по отношению к химическим, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях - как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток».

Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

Недостатки геостационарной орбиты

Задержка сигнала

Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля-спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Ping (ответ) составит полсекунды (точнее 0,48 с). С учетом задержки сигнала в аппаратуре ИСЗ и аппаратуре наземных служб общая задержка сигнала на маршруте «Земля → спутник → Земля» может достигать 2-4 секунд . Такая задержка делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх) .

Невидимость ГСО с высоких широт

Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях, спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу ), то невозможна связь и телетрансляция с использованием ГСО в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды . К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположеной на 75° ю.ш. французской станции Конкордия , с которой уже видно несколько американских геостационарных спутников .

Таблица наблюдаемого сектора геостационарной орбиты в зависимости от широты места
Все данные приведены в градусах и их долях.

Широта
местности
Видимый сектор орбиты
Теоретический
сектор
Реальный
(с уч. рельефа)
сектор
90 -- --
82 -- --
81 29,7 --
80 58,9 --
79 75,2 --
78 86,7 26,2
75 108,5 77
60 144,8 132,2
50 152,8 143,3
40 157,2 149,3
20 161,5 155,1
0 162,6 156,6

Из вышележащей таблицы видно например, что если на широте С.-Петербурга (~60°) видимый сектор орбиты (и соответственно кол-во принимаемых спутников) равен 84 % от максимально возможного (на экваторе), то на широте по-ва Таймыр (~75°) видимый сектор составляет 49 %, а на широте Шпицбергена и мыса Челюскина (~78°) лишь 16 % от наблюдаемого на экваторе. В этот сектор орбиты в районе Сибири попадает 1-2 спутника (не всегда необходимой страны).

Солнечная интерференция

Одним из самых неприятных недостатков геостационарной орбиты, является уменьшение и полное отсутствие сигнала в ситуации, когда солнце и спутник-передатчик находятся на одной линии с приёмной антенной (положение «солнце за спутником»). Данное явление присуще и другим орбитам, но именно на геостационарной, когда спутник «неподвижен» на небе, проявляется особенно ярко. В средних широтах северного полушария солнечная интерференция проявляется в периоды с 22 февраля по 11 марта и с 3 по 21 октября, с максимальной длительностью до десяти минут . В ясную погоду, сфокусированые светлым покрытием антенны солнечные лучи могут повредить (расплавить) приёмо-передающую аппаратуру спутниковой антенны .

См. также

  • Квази-геостационарная орбита

Примечания

  1. Noordung Hermann The Problem With Space Travel. - DIANE Publishing, 1995. - P. 72. - ISBN 978-0788118494
  2. Extra-Terrestrial Relays - Can Rocket Stations Give Worldwide Radio Coverage? (англ.) (pdf). Arthur C. Clark (October 1945). Архивировано
  3. Требование неподвижности спутников относительно Земли на своих орбитальных позициях на геостационарной орбите, а также большое количество спутников на этой орбите в разных её точках, приводят к интересному эффекту при наблюдении и фотографировании звёзд с помощью телескопа с использованием гидирования - удержания ориентации телескопа на заданной точке звёздного неба для компенсации суточного вращения Земли (задача, обратная геостационарной радиосвязи). Если наблюдать в такой телескоп звёздное небо вблизи небесного экватора , где проходит геостационарная орбита, то при определённых условиях можно видеть, как спутники друг за другом проходят на фоне неподвижных звёзд в пределах узкого коридора, как автомобили по оживлённой автотрассе. Особенно хорошо это заметно на фотографиях звёзд с длительными экспозициями, смотри, например: Babak A. Tafreshi. GeoStationary HighWay. (англ.) . The World At Night (TWAN). Архивировано из первоисточника 23 августа 2011. Проверено 25 февраля 2010. Источник: Бабак Тафреши (Ночной мир). Геостационарная магистраль. (рус.) . Астронет.ру. Архивировано из первоисточника 23 августа 2011. Проверено 25 февраля 2010.
  4. для орбит спутников, масса которых пренебрежимо мала по сравнению с массой притягивающего его астрономического объекта
  5. Орбиты искусственных спутников Земли. Вывод спутников на орбиту
  6. The Teledesic Network: Using Low-Earth-Orbit Satellites to Provide Broadband, Wireless, Real-Time Internet Access Worldwide
  7. Журнал «Вокруг Света».№ 9 Сентябрь 2009. Орбиты, которые мы выбираем
  8. Мозаика. Часть II
  9. взято превышение спутником горизонта в 3°
  10. Внимание! Настаёт период активной солнечной интерференции!
  11. Солнечная интерференция

Ссылки



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows