Простая схема радиоприемника: описание. Старые радиоприемники. Принципы ведения радиосвязи. Канал и линия радиосвязи

Простая схема радиоприемника: описание. Старые радиоприемники. Принципы ведения радиосвязи. Канал и линия радиосвязи

19.05.2019

Рассмотрим структуру радиосвязи (рис. 2.15).

Микрофон (М) преобразует звуковые колебания речи в электрические колебания тока звуковой (низкой) частоты. Одним из основных блоков радиопередатчика является задающий генератор (ЗГ) (или генератор высокой частоты), преобразующий энергию постоянного тока (специального источника питания) в энергию колебания токов высокой частоты (ВЧ). Усиленный в усилителе низкой частоты (УНЧ) ток звуковой частоты поступает на модулятор (Мод), воздействуя на один из параметров (амплитуду, частоту или фазу) тока высокой частоты. Вырабатываемого задающим генератором. В результате в антенну передатчика подаются токи высокой частоты (радиочастоты), изменяющиеся по амплитуде, частоте или фазе в соответствии с передаваемыми звуковыми колебаниями (передаваемыми первоначальным сообщением). Процесс воздействия на один из параметров ВЧ-сигнала по закону изменения передаваемого первоначального сообщения называется модуляцией , соответственно амплитудной, частотной или фазовой.

Рисунок 2.15 – Структурная схема радиосвязи

Токи высокой частоты, проходя по антенне передатчика, образуют вокруг нее электромагнитное поле. Электромагнитные волны (радиоволны) отделяются от антенны и распространяются в пространстве со скоростью 300000 км/с.

В приемной антенне радиоволнами (электромагнитным полем) наводится ЭДС радиочастоты, создающая модулированный ток ВЧ, который в точности повторяет все изменения тока в передающей антенне. Токи высокой частоты от приемной антенны по фидерной линии передаются на избирательный усилитель высокой частоты (УВЧ). Избирательность обеспечивается резонансным контуром, чаще всего состоящим из параллельно включенных катушки индуктивности и конденсатора, образующих параллельный колебательный контур, имеющий резонанс тока на частоте электромагнитных колебаний, передаваемых передатчиком. К передатчикам радиостанций, работающих на других частотах, данный радиоприемник практически не чувствителен.

Усиленный сигнал подается на детектор (Дет), преобразующий принятые сигналы ВЧ в токи звуковых колебаний, изменяющиеся подобно токам звуковой частоты, создаваемым микрофоном на передающем пункте. Такое преобразование называется детектированием (демодуляцией). Полученный после детектирования ток звуковой или низкой частоты (НЧ) обычно еще усиливается в УНЧ и передается на громкоговоритель (динамик или наушники), который преобразует этот ток НЧ в звуковые колебания.

Радиосвязь бывает одно- и двухсторонней. При односторонней радиосвязи одна из радиостанций осуществляет только передачу, а другая (или другие) – только прием. При двухсторонней радиосвязи радиостанции осуществляют одновременно передачу и прием.

Симплексная радиосвязь – это двухсторонняя радиосвязь, при которой каждый абонент ведет только передачу или только прием поочередно, выключая свой передатчик на время приема (рис. 2.16). Для симплексной связи достаточно одной радиочастоты (одночастотная симплексная радиосвязь). Каждая радиостанция имеет одну антенну, которая при приеме и передаче переключается соответственно на вход радиоприемника или на вход радиопередатчика.

Рисунок 2.16 – Структурная схема симплексной радиосвязи

Симплексная радиосвязь обычно используется при наличии относительно небольших информационных потоков. Для радиосетей с большой нагрузкой характерна дуплексная связь.

Дуплексная радиосвязь – это двухсторонняя радиосвязь, при которой прием и передача ведутся одновременно. Для дуплексной радиосвязи требуются две разные несущие частоты, а передатчики и приемники должны иметь свои антенны (рис. 2.17). Кроме того, на входе каждого приемника устанавливают специальный фильтр (дуплексер ), не пропускающий колебаний радиочастоты собственного передатчика. Достоинствами дуплексной радиосвязи являются ее высокая оперативность и пропускная способность радиосети.

Рисунок 2.17 – Структурная схема дуплексной радиосвязи

Радиосвязь имеет следующие преимущества перед проводной связью:

Ø быстрое развертывание на любой местности и в любых условиях;

Ø высокая оперативность и живучесть радиосвязи;

Ø возможность передачи различных сообщений любому количеству абонентов циркулярно, избирательно или группе абонентов;

Ø возможность связи с подвижными объектами.

Радиопередающие устройства

В функциональном смысле под радиопередающим устройством понимается комплекс оборудования, предназначенный для формирования и излучения радиочастотного сигнала (радиосигнала). В качестве функциональных узлов в состав радиопередатчика входят генератор несущей и модулятор. Кроме того, радиопередающие устройства (особенно мощные) содержат много другого оборудования: источники питания, средства охлаждения, автоматического и дистанционного управления, сигнализации, защиты и блокировки и пр.

Основные показатели радиопередающих устройств условно могут быть разделены на 2 группы: энергетические и показатели электромагнитной совместимости.

Важнейшими энергетическими показателями радиопередающего устройства являются номинальная мощность и промышленный коэффициент полезного действия. Под номинальной мощностью (Р) понимают среднее за период радиочастотного колебания значение энергии, подводимой к антенне. Промышленный коэффициент полезного действия (КПД) представляет собой отношение номинальной мощности Р к общей Р общ, потребляемой от сети переменного тока радиопередающим устройством: η = Р/Р общ · 100% .

Основными показателями электромагнитной совместимости являются диапазон рабочих частот, нестабильность частоты колебаний и внеполосные излучения.

Диапазоном рабочих частот называют полосу частот, в которой радиопередающее устройство обеспечивает работу в соответствии с требованиями стандарта.

Под нестабильностью частоты радиопередатчика понимают отклонение частоты колебаний на его выходе за определенный промежуток времени относительно установленной частоты. Малая нестабильность (высокая стабильность) частоты позволяет ослабить помехи радиоприему.

Внеполосными называют такие излучения , которые расположены вне полосы, отведенной для передачи полезных сообщений. Внеполосные излучения являются источником дополнительных помех радиоприему. При подавлении внеполосных излучений качество передачи сигнала не ухудшается.

По назначению радиопередающие устройства делятся на связные. Радиовещательные и телевизионные. По диапазону рабочих частот радиопередающие устройства подразделяются в соответствии с классификацией видов радиоволн. В зависимости от номинальной мощности радиопередающие устройства делятся на маломощные (до 100 Вт), средней мощности (от 100 до 10000 Вт), мощные (от 10 до 500 кВт) и сверхмощные (свыше 500 кВт).

Специфика эксплуатации позволяет выделить стационарные и подвижные радиопередающие устройства (автомобильные, самолетные, носимые и т.д.).

Радиоприемные устройства

Радиоприем – это выделение сигналов из радиоизлучения. В том месте, где ведется радиоприем, одновременно существуют радиоизлучения от множества естественных и искусственных источников. Мощность полезного радиосигнала составляет очень малую долю мощности общего радиоизлучения в месте радиоприема. Задача радиоприемного устройства сводится к выделению полезного радиосигнала из множества других сигналов и возможных помех, а также к воспроизведению (восстановлению) передаваемого сообщения.

Основными (в смысле универсальности) показателями радиоприемных устройств являются: диапазон рабочих частот, чувствительность, избирательность, помехоустойчивость.

Диапазон рабочих частот определяется диапазоном возможных частот настройки. Другими словами, это область частот настройки, в пределах которой радиоприемное устройство может плавно или скачкообразно перестраиваться с одной частоты на другую.

Чувствительность является мерой способности радиоприемного устройства обеспечивать прием слабых радиосигналов. Количественно оценивается минимальным значением электродвижущей силы (ЭДС) сигнала на входе радиоприемного устройства, при котором имеет место требуемое отношение сигнал-шум на выходе при отсутствии внешних помех.

Избирательностью называется свойство радиоприемного устройства, позволяющее отличать полезный радиосигнал от радиопомехи по определенным признакам, свойственным радиосигналу. Иначе: это способность радиоприемного устройства выделять нужный радиосигнал из спектра электромагнитных колебаний в месте приема, снижая мешающие радиосигналы. Различают пространственную и частотную избирательности. Пространственная избирательность достигается за счет использования антенны, обеспечивающей прием нужных сигналов с одного направления и ослабления радиосигналов с других направлений от посторонних источников. Частотная избирательность количественно характеризует способность радиоприемного устройства выделять из всех радиочастотных сигналов и радиопомех, действующих на входе, сигнал, соответствующий частоте настройки радиоприемника.

Помехоустойчивостью радиоприемного устройства называется его способность противодействовать мешающему действию помех. Количественно помехоустойчивость оценивается тем максимальным значением уровня помехи в антенне, при котором еще обеспечивается прием радиосигналов.

Радиоприемные устройства можно классифицировать по различным признакам. По назначению можно выделить радиовещательные (обычно называемые радиоприемниками или приемниками), телевизионные (телевизоры), профессиональные, специальные радиоприемные устройства. К профессиональным относятся магистральные радиоприемные устройства декаметрового диапазона, радиорелейных и спутниковых линий связи. Среди радиоприемных устройств специального назначения следует назвать, например, радиолокационные, радионавигационные, самолетные и т.д.

Антенны и фидеры

Антенна представляет собой элемент сопряжения между передающим или приемным оборудованием и средой распространения радиоволн. Антенны, имеющие вид проводов или поверхностей, обеспечивают излучение электромагнитных колебаний при передаче, а при приеме они «собирают» падающую энергию. Антенны, состоящие из проводов небольшого поперечного сечения по сравнению с длиной волны и продольными разрезами, называют проволочными . Антенны, излучающие через свой раскрыв – апертуру, называют апертурными . Иногда их называют дифракционными, рефлекторными, зеркальными. Электрические токи таких антенн протекают по проводящим поверхностям, имеющим размеры, соизмеримые с длиной волны или много большие ее.

Электрическая цепь и вспомогательные устройства, с помощью которых энергия радиочастотного сигнала проводится от радиопередатчика к антенне или от антенны к радиоприемнику, называется фидером . К фидерам предъявляются следующие требования: потери энергии высокочастотных сигналов в нем должны быть минимальными; они не должны иметь антенного эффекта, т.е. не должны излучать или принимать электромагнитные волны; обладать достаточной электрической прочностью, т.е. передавать требуемую мощность без опасности электрического пробоя изоляции.

Передающие антенны, используемые в километровом и гектометровом диапазонах радиоволн, соединяются с радиопередатчиком с помощью многопроводных коаксиальных фидеров. В декаметровом диапазоне фидеры обычно выполняются в виде проволочных двух- или четырехпроводных линий. К антеннам метровых радиоволн энергия, как правило, проводится с помощью коаксиального кабеля. На более коротких волнах, в частности в сантиметровом диапазоне, фидер выполняется в виде полой металлической трубы – волновода прямоугольного, эллиптического или круглого сечения.

Классификация и способы распространения радиоволн приведены в таблицах ниже.



Может возникнуть вопрос, нельзя ли для того, чтобы передать с помощью радиоволн человеческую речь, звуковые колебания превратить в электрические колебания, а последние с помощью антенны преобразовать в электромагнитные волны, чтобы затем в приемном пункте эти электромагнитные волны снова преобразовать в звуковые?

Колебания, создаваемые голосом, являются колебаниями низких частот, лежащих обычно в пределах от 75 до 3 000 Гц. Используя формулу (1-3), легко показать, что такие колебания создадут волны с длиной от 4000 до 100 км. Антенны же могут эффективно излучать электро-1 магнитные колебания только тогда, когда их размеры соизмеримы с длиной волны. Поэтому передача колебаний с такими длинами волн оказывается практически невозможной.

Если учесть, что можно построить антенны с размерами, не превышающими несколько сот метров, то становится ясным, что для радиосвязи можно использовать волны, длина которых не превышает нескольких километров. Такие электромагнитные волны создаются колебаниями с частотами, во много раз превышающими частоты звуковых колебаний. Для передачи с их помощью колебаний звуковой частоты или условных сигналов изменяют амплитуду, частоту или фазу тока высокой частоты в соответствии с законом передаваемого колебания звуковой частоты или создают по определенному коду перерывы в передаче. Изменение амплитуды, фазы или частоты тока или введение в передачу перерывов по определенной программе называется модуляцией.

На рисунке приведены графики передаваемого звукового сигнала и амплитудно-модулированных колебаний, которые получаются в том случае, когда по закону передаваемого сигнала изменяется амплитуда высокочастотных колебаний.

Амплитудно-модулированные колебания

Таким образом, всякое радиопередающее устройство должно состоять из трех основных элементов: генератора переменной э. д. с, прибора, в котором происходит модуляция, и антенны.

В приемном пункте должно находиться устройство, преобразующее энергию электромагнитных волн в энергию электрических колебаний, т. е. приемная антенна. К антенне, расположенной в приемном пункте, приходят электромагнитные волны, излучаемые разными передатчиками, работающими на различных частотах. Для того чтобы принимать сигналы только одной станции, необходимо иметь избирательное устройство, которое могло бы выделить из колебаний различных частот только те колебания, которые передаются нужной радиостанцией. Для решения этой задачи используются контуры, настраиваемые на частоту принимаемой радиостанции.

Выделенные с помощью контура высокочастотные колебания нужно подвергнуть обратному преобразованию, т. е. получить из них токи или напряжения, изменяющиеся в соответствии с законом модуляции колебаний в передатчике. Для решения этой задачи приемник должен иметь специальное устройство, которое называют детектором.

Наконец, выделенный сигнал нужно подать на некоторое оконечное устройство, которое запишет его или позволит человеку воспринимать его в виде звука или света.

Следовательно, радиоприемное устройство должно содержать в себе обязательно антенну, избирательное устройство, детектор и оконечное устройство.

Таким образом, структурная схема радиосвязи имеет

вид, изображенный на рисунке.

Структурная схема линии радиосвязи.

Прежде всего о видах ведения радиосвязи. Различают два вида ведения двусторонней связи: дуплексную и симплексную. При дуплексной связи радисты могут работать» на передачу и прием одновременно и независимо друг от друга. Если принимающий что-то не понял, например из-за какой-то помехи, он, воспользовавшись кратковременной паузой, может перебить работу передающего, чтобы уточнить содержание сообщения. Для такого вида связи радисты должны располагать двумя приемопередающими станциями или раздельно передатчиком и приемником, работающими независимо один от другого. При симплексной связи радисты работают на передачу и прием поочередно: один передает, а другой в это время принимает, затем, наоборот, второй передает, а первый принимает. При таком виде связи перебой радиста, работающего на передачу, исключен.

Рис. 405. Схема радиосвязи: а - по радионаправлению; б - в радиосети

Все приемопередающие станции, построенные по трансиверной схеме, рассчитаны на ведение только симплексной связи.

Независимо от вида ведения связи существуют два основных способа организации двусторонних радиосвязей - по радионаправлению и в радиосети.

Схема связи по радионаправлению, т. е. в каком-то одном направлении, показана на рис. 405, а. В этом случае два радиста этого радионаправления работают только между собой. При таком способе связь может быть весьма устойчивой и к тому же дуплексной. Поскольку радистам сообщается направление линии связи, они могут применять антенны направленного действия, увеличивающие дальность и надежность связи.

Связь в радиосети - связь между тремя и более радистами (рис. 405,б). Для каждой радиостанции выделяется рабочая частота, обычно общая для всех станций данной радиосети, и запасная - рабочая частота, на которую перестраивают станции в случае появления помех или неустойчивой связи на первой выделенной частоте. Среди них есть главная станция, которая устанавливает порядок работы в радиосети. Как правило, связь ведется поочередно между парой радиостанций, а другие станции сети в это время переключены на прием. Четкость, внимательность и дисциплина радистов - гарантия слаженной работы в радиосети. Иначе связь может быть нарушена из-за взаимных помех.

Можно ли маломощными станциями создать линию связи, длина которой значительно превышает их «дальнобойность». Можно. Как? С помощью пункта ретрансляции (рис. 406) - промежуточного пункта, где ведется прием от одной станции, усиление и последующая передача сигналов к другой станции радиолинии связи, но уже на другой частоте.

Рис. 406. Пункт ретрансляции

Для такого промежуточного пункта используются две радиостанции, соединенные между собой проводной линией связи, а при ретрансляции в дуплексном режиме - два приемника и два передатчика.

А если пункт ретрансляции разместить в вертолете? Протяженность линии связи между ее конечными радиостанциями может быть многократно увеличена.

Дальность, устойчивость и качество радиосвязи зависят от того, как размещены радиостанции и их антенны. В городах и других крупных населенных пунктах дальность радиосвязи, и особенно на УКВ, уменьшается по сравнению с радиосвязью между станциями в полевых условиях. А если радиостанция с антенной окажется в подвале, под мостом, в канализационном коридоре, то радиосвязь вообще может пропасть из-за поглощения электромагнитной энергии земляными укрытиями, железобетонными конструкциями. Вот почему опытный радист старается разместить свою УКВ станцию или ее антенну, соединенную с приемопередатчиком фидером, на возвышении, например на чердаке здания, на крыше, и возможно дальше от глухих стен и железобетонных перекрытий. Связь становится лучше! В лесисто-болотистой местности радисты развертывают свои станции на опушках леса, в мелколесье, на полянах, избегая влияния на распространение радиоволн влажных стволов деревьев.

Рис. 407. Развертывание УКВ радиостанции в гористой местности

В таких условиях хорошо удлинить штыревую антенну и поднять ее выше деревьев.

В гористой местности УКВ радиостанции развертывают на возвышенностях (рис. 407), чтобы антенны станций «видели» друг друга. Однако если УКВ станции будут развернуты вблизи горы или за горой, закрывающей корреспондента, связь может быть нарушена. Если радиосвязь устанавливают через замерзшее озеро, реку или другой водоем с пресной водой, УКВ радиостанции располагают не на льду водоема, а подальше от берега на возвышенности.

Что представляет собой лучевая антенна, обладающая направленностью излучения и приема радиоволн? Это провод длиной около , натянутый на изоляторах над землей, один конец которого подключен к приемопередатчику (рис. 408). К другому концу провода через нагрузочный резистор сопротивлением около 400 Ом присоединяют противовес - несколько отрезков провода длиной, равной примерно четверти длины рабочей волны радиостанции. Провод такой антенны с помощью колышков, входящих в комплект радиостанции, подвешивают горизонтально над землей на высоте . При этом ось провода антенны должна совпадать с направлением на корреспондента и «смотреть» на него нагрузочным резистором с противовесом. В этом направлении антенна и излучает большую часть электромагнитной энергии и много лучше чем с других направлений принимает радиоволны. Такую антенну хорошо использовать, когда радисту приходится работать в блиндаже, подвале, окопе или другом укрытии.

Рис. 408. Лучевая антенна

Точно так же можно вынести из укрытия и штыревую антенну, соединив ее с приемопередатчиком высокочастотным кабелем. Но по эффективности работы штыревая антенна уступает лучевой.

Для связи на большие расстояния в диапазоне УКВ может быть создана радиорелейная линия связи.

Принципы ведения радиосвязи. Канал и линия радиосвязи

Слово “радио” происходит от латинского radiare - излучать или испускать лучи и является общим термином, используемым к любым практическим применениям радиоволн. При этом под радиоволнами понимаются электромагнитные волны, распространяющиеся через открытое пространство (среду распространения радиоволн) без искусственных направляющих сред, таких, как провода или трубы - волноводов. При использовании электромагнитных волн в качестве материального носителя для передачи информации на расстояние приходим к радиосвязи как к одному из способов электросвязи, применяющей для обмена информацией электрические системы передачи. Таким образом, радиосвязь - это электросвязь, осуществляемая посредством радиоволн.

В широком смысле радиосвязь представлена несколькими родами связи, использующими для передачи сообщений различные механизмы распространения радиоволн: вдоль земной поверхности, с применением отражения в разных слоях атмосферы или посредством космических ретрансляторов. Каждый род радиосвязи характеризуется своими принципами, определяемыми, главным образом, особенностями диапазонов используемых для передачи сообщений радиоволн. В дальнейшем, говоря о радиосвязи, будет иметься в виду такой ее род, который дает возможность непосредственной связи между пространственно разнесенными точками на земной поверхности без использования промежуточных пунктов связи, осуществляющих переприем (ретрансляцию) сигналов. При этом ретрансляция, в принципе, может быть применима для повышения дальности связи или в других случаях, например, для повышения эффективности связи в сложных условиях помеховой обстановки. Другой отличительной особенностью того рода радиосвязи, который будет рассмотрен ниже, является возможность передачи и приема сообщений в движении.

Все поступающие от источника для передачи посредством радиоволн сообщения преобразуются в передающем оконечном устройстве в первичный электрический сигнал u (t), представляющий собой изменяющееся во времени напряжение (ток), отображающее сообщения. В зависимости от характера сообщений и вида преобразования первичный электрический сигнал может быть дискретным или непрерывным. В качестве передающего оконечного устройства могут выступать микрофон гарнитуры микрофонно-телефонной (МТГ) или телефонной трубки, телеграфный ключ, телеграфный аппарат и другие технические средства.

Характерной особенностью первичных электрических сигналов является их сравнительно медленное изменение во времени, т. е. низкая частота колебаний. Спектры большинства первичных электрических сигналов ограничены максимальной частотой, не превышающей нескольких килогерц. Такие низкочастотные сигналы не могут эффективно излучаться в среду распространения радиоволн, так как для этого необходимы излучатели, имеющие геометрические размеры, соизмеримые с длиной волны сигнала. Поэтому далее в радиопередатчике первичный электрический сигнал преобразуется в удобный для передачи радиосигнал uс(t). Процесс преобразования называется модуляцией для непрерывных первичных сигналов или манипуляцией для дискретных. В процессе модуляции (манипуляции) первичный электрический сигнал выступает в роли модулирующего сигнала, изменяющего один из параметров (амплитуду, частоту, фазу) высокочастотного гармонического колебания несущей частоты.

В общем случае процессу модуляции первичного электрического сигнала предшествует операция его кодирования, в результате которой последовательность элементов сообщения по определенному правилу заменяется последовательностью кодовых символов.

Радиосигналы по аналогии с первичными электрическими сигналами, которые они отображают, могут быть непрерывными (аналоговыми) или дискретными. В некоторых случаях дискретные сигналы называют цифровыми, поскольку их можно представить в цифровой форме - в виде чисел с конечным числом разрядов. В радиосвязи наибольшее применение нашли цифровые сигналы, имеющие только два дискретных значения. Дискретные сигналы могут использоваться для передачи не только дискретных, но и непрерывных сообщений, и обратно, непрерывные сигналы - для передачи дискретных сообщений.

Радиосигнал с выхода радиопередатчика при помощи соединительной линии, которая называется фидером, подводится к передающей антенне и в виде радиоволн излучается ею в открытое пространство. Скорость распространения радиоволн зависит от свойств среды, при этом максимальная скорость имеет место в свободном пространстве (вакууме), и она совпадает со скоростью света в вакууме, равной 3×108 м/с. В других средах скорость радиоволн меньше и определяется относительными диэлектрической и магнитной проницаемостями среды.

В точке приема радиоволны преобразуются приемной антенной в высокочастотный сигнал, который далее по фидеру подается в радиоприемник, где происходит восстановление переданного первичного электрического сигнала u (t). Для этого выполняются операции, обратные тем, которые были осуществлены в радиопередатчике - демодуляция (детектирование) и декодирование сигнала. В приемном оконечном устройстве (например, телефонах МТГ, телеграфном аппарате, громкоговорителе) первичные сигналы преобразуются в сообщения и подаются их получателю.

Задача преобразования принимаемых сигналов в сообщения более сложная, чем преобразование сообщений в радиосигнал, так как преобразованию подвергается не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение. Наличие помех при передаче сообщений связано с тем, что среда распространения радиоволн является общей для многих источников электромагнитного излучения, т. е. имеет свободный доступ.

Совокупность технических устройств и среды распространения радиоволн, обеспечивающая передачу сообщений от источника к получателю с помощью радиоволн, называется линией радиосвязи (радиолинией). При этом источники и получатели, использующие линии радиосвязи для передачи и приема сообщений, являются абонентами радиосвязи. Абоненты могут передавать сообщения самостоятельно или с помощью радистов (радиотелеграфистов). Абонентов радиосвязи и радистов, осуществляющих непосредственную передачу сообщений по радиолинии, принято называть корреспондентами.

Структурная схема линии радиосвязи, предназначенной для передачи сообщений между абонентами (корреспондентами) А и Б, показана на рис. 2.1. В ней радиопередатчик (передатчик) и передающую антенну принято объединять в радиопередающее устройство, а радиоприемник (приемник) и приемную антенну - в радиоприемное устройство. Кроме того, передающую антенну и фидер, соединяющий ее с передатчиком, называют передающим антенно-фидерным устройством (АФУ) или трактом, а приемную антенну и фидер, связывающий ее с приемником, - приемным АФУ или трактом.

В общем смысле линию радиосвязи можно считать одним из видов канала электросвязи (канала связи), под которым понимается путь прохождения сигналов электросвязи, обеспечивающий при подключении к его окончаниям абонентских оконечных устройств передачу сообщений от источника к получателю (получателям). Каналам электросвязи в зависимости от вида сети связи присваиваются названия, например, телефонный канал, телеграфный канал, канал передачи данных, канал звукового вещания.

Линия радиосвязи может быть одноканальной или многоканальной. В последнем случае ей принадлежит несколько одновременно действующих каналов связи, по которым передаются сигналы, отображающие различные (иногда одинаковые) сообщения. В отличие от одноканальной в состав многоканальной радиолинии могут входить несколько передающих и приемных оконечных устройств, осуществляющих преобразование сообщений от разных источников в первичные электрические сигналы и обратно. Кроме того, в многоканальной линии радиосвязи должны быть предусмотрены устройства, выполняющие функции объединения и разделения сигналов разных абонентов.

Линии радиосвязи могут быть прямыми, соединяющими абонентов непосредственно, без использования промежуточных пунктов (ретрансляторов радиосигналов), или составными, проходящими через такие пункты (в этом случае в состав радиолинии включаются технические устройства ретранслятора, обеспечивающие прием, преобразование, усиление и последующую передачу радиосигналов, принимаемых от обоих корреспондентов).

Часть линии радиосвязи, которая создает путь прохождения радиосигналов, принято называть каналом радиосвязи (радиоканалом). Границы канала радио-
связи в зависимости от решаемых задач или исследуемых вопросов могут быть выбраны произвольно, лишь бы по каналу проходили радиосигналы, отображающие сообщения. В одних случаях под каналом радиосвязи понимают совокупность технических устройств, обеспечивающих образование радиосигнала и его излучение в радиопередатчике, а также прием радиосигнала и обратное его преобразование в радиоприемнике, и среды распространения радиоволн. В других случаях, например, при рассмотрении свойств каналов электросвязи, каналом радиосвязи называют только среду распространения радиоволн.

Канал радиосвязи, аналогично радиолинии, является частным случаем канала передачи, под которым понимается комплекс технических средств и среды распространения, обеспечивающий передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью между узлами и станциями сети. Радиоканал представляет собой канал передачи, в котором сигналы электросвязи передаются посредством радиоволн. В зависимости от методов передачи сигналов электросвязи канал передачи может быть аналоговым или цифровым (дискретным). Вид канала радиосвязи, кроме того, определяется типом радиоволн, используемых для передачи сообщений.

Канал передачи, параметры которого соответствуют принятым нормам, называется типовым каналом передачи. Типовые каналы передачи в радиосвязи будут рассмотрены в главе 7.

Показанная на рис. 2.1 линия радиосвязи реализует двустороннюю радиосвязь, так как ее состав позволяет обоим корреспондентам и передавать, и принимать сообщения. При односторонней радиосвязи один из корреспондентов осуществляет только передачу сообщений, и другой (или другие) - только прием.

Двусторонняя радиосвязь может быть симплексной или дуплексной. В первом случае передача и прием информации между корреспондентами производятся поочередно, при этом радиообмен возможен на одной частоте или на разнесенных частотах приема и передачи. В этом случае радиосвязь является симплексной одночастотной (или просто симплексной), а во втором - симплексной двухчастотной. При ведении дуплексной радиосвязи передача и прием информации осуществляются одновременно. Причем, если передатчики корреспондентов включены постоянно, независимо от того, происходит передача информации или нет, радиосвязь принято называть дуплексной, а если передатчики включаются только на время передачи информации, а когда передачи нет, выключаются - полудуплексной.

Для передачи сообщений по радиоканалам используется часть спектра электромагнитных колебаний, находящаяся в пределах от 3 кГц до 3000 ГГц. Эта часть спектра называется радиочастотным спектром (радиоспектром), а частоты радиоспектра - радиочастотами. Согласно международному документу - Регламенту радиосвязи, радиоспектр содержит 9 полос (диапазонов), начиная с четвертой. Деление спектра на диапазоны произведено так, что отношение верхней граничной частоты диапазона к его нижней граничной частоте равно 10. При этом верхняя граничная частота любого диапазона включается в него, а нижняя - исключается. В пределах одного диапазона свойства распространения радиоволн практически одинаковы. В табл. 2.1 приведены соответствующие Регламенту радиосвязи наименования, буквенные обозначения (международные и русские) и границы частотных полос, составляющих радиоспектр.

Волны в диапазоне от 10 м до 1 см часто объединяют названием - ультракороткие волны (УКВ), а под сверхвысокими частотами понимают ДМВ, СМВ и ММВ. Первое объясняется тем, что каждый из диапазонов с номерами от 8 и выше, имея особенности распространения, обладает некоторыми общими для всех диапазонов УКВ свойствами; а второе - тем, что в технических устройствах СВЧ для получения и выделения колебаний высоких частот в резонансных цепях вместо традиционных для более низких частот конденсаторов и катушек индуктивности используются другие конструкции: короткие отрезки проводных линий, металлические полоски, волноводы и коробчатые объемные резонаторы. Кроме того, радиоволны диапазонов от 9 и выше часто называют микроволнами.

Радиоволнам присущи общие для электромагнитных волн законы и явления, важнейшими из которых являются:

прямолинейное распространение радиоволн - распространение радиоволн в однородной (или слабо неоднородной) среде непосредственно от источника к месту приема по прямолинейным или близким к ним траекториям;

отражение радиоволн - изменение направления распространения радиоволн вследствие отражения от поверхности раздела двух сред или от неоднородностей среды;

дифракция радиоволн - изменение структуры поля волны под влиянием препятствий, представляющих собой пространственные неоднородности среды распространения, в частности, приводящие к огибанию радиоволной этих препятствий;

рефракция радиоволн - изменение направления распространения радиоволн вследствие изменения скорости их распространения при прохождении через неоднородную среду;

поглощение радиоволн - уменьшение энергии радиоволны вследствие частичного перехода ее в тепловую энергию в результате взаимодействия со средой;

рассеяние радиоволн - преобразование распространяющихся в одном направлении радиоволн в радиоволны, распространяющиеся в различных направлениях;

многолучевое распространение - распространение радиоволн от передающей к приемной антенне по нескольким траекториям;

интерференционные замирания радиоволн - квазипериодические изменения уровня поля вследствие прихода в место приема множества радиоволн с меняющимися во времени друг относительно друга фазами.

Таблица 2.1

Классификация диапазонов радиочастот и радиоволн

Номер полосы

Границы частот

Наименование частот

Границы
длин волн

Наименование волн

Очень низкие

Мириаметровые, или сверхдлинные (МИМВ, СДВ)

Километровые, или длинные

300…3000 кГц

Гектометровые, или средние

Декаметровые, или короткие

(ДКМВ, КВ)

Очень высокие

Метровые

300…3000 МГц

Ультравысокие

Дециметровые

Сверхвысокие

Сантиметровые

Миллиметровые

300…3000 ГГц

Гипервысокие

Децимилли-

метровые

В радиосвязи передача радиосигналов может производиться двумя путями: вдоль земной поверхности и с излучением в ионосферу и от нее обратно к поверхности Земли.

Исходя их этого, различают земные и ионосферные радиоволны.

Радиоволны, распространяющиеся в непосредственной близости (в масштабе длины волны) земной поверхности, называются земными радиоволнами. Земные радиоволны включают прямые волны (распространяющиеся прямолинейно), волны, отраженные от земли, и поверхностные радиоволны (распространяющиеся вдоль поверхности раздела сред). Ионосферными называются радиоволны, распространяющиеся в свободном пространстве путем отражения от ионосферы или рассеяния в ней. Радиосвязь, использующую ионосферные волны, также определяют как ионосферную.

Ионосферу образует ионизированная область атмосферы, расположенная на высотах от 60…80 до 1000…1200 км над Землей. Основным источником ионизации атмосферы, под действием которой нейтральные молекулы и атомы газов, входящие в состав ионосферы, расщепляются на положительно заряженные ионы и свободные электроны, является ультрафиолетовое и рентгеновское излучение Солнца, а также корпускулярные потоки, в основном солнечного происхождения. Кроме того, ионизация атмосферы происходит под действием космических лучей дальних звезд и космической пыли, непрерывно попадающих в атмосферу Земли.

Степень ионизации, характеризуемая электронной плотностью, неодинакова по высоте вследствие неоднородности атмосферы. Поэтому ионосфера приобретает сложную многослойную структуру, в ней образуются ионизированные облака, электронная концентрация которых зависит как от высоты облака, так и от степени солнечной активности, толщины атмосферы и некоторых других причин. Распределение интенсивности ионизации по высоте в реальной атмосфере имеет несколько максимумов. Различают три области D, E, F (в порядке возрастания высоты над поверхностью Земли), в пределах которых существуют три ионизированных слоя того же названия. В дневные часы ионизированный слой F распадается на два слоя F1 и F2. Степень ионизации зависит от времени года, суток и географического месторасположения, причем для разных слоев эти зависимости различны. Средние высоты слоев и степень их ионизации (плотность электронов) показаны в табл. 2.2.

Для каждого слоя характерна своя критическая частота fкр, определяемая как наивысшая частота радиосигнала, при которой происходит отражение вертикально направленной радиоволны от этого слоя. При частоте выше критической радиоволна не отражается, а проходит через ионизированный слой ионосферы.

Одновременно с появлением новых электронов в ионосфере часть имеющихся в ней электронов исчезает, присоединяясь к положительным ионам и нейтральным молекулам. Процесс воссоединения заряженных частиц и образования молекул в атмосфере называется рекомбинацией.

Ионизацию, кроме Солнца, создают метеоры, вторгающиеся в земную атмосферу со скоростями несколько десятков километров в секунду. Метеорное вещество при попадании в плотные слои атмосферы нагревается и испаряется, причем частицы вещества, будучи ионизированными, ионизируют окружающий воздух. За счет этого средний уровень ионизации атмосферы возрастает. Кроме того, за метеором образуется столб ионизированного воздуха, имеющий форму цилиндра, который создает местную ионизацию. След метеора быстро расширяется и рассеивается, существуя в атмосфере от одной до нескольких секунд. Такие ионизированные следы метеоров образуются на высоте 80…120 км над земной поверхностью приблизительно между слоем D и слоем E. Радиосвязь, основанная на использовании отражения радиоволн от ионизированных слоев метеоров, называется метеорной радиосвязью. В линиях метеорной радиосвязи применяется прерывистый режим работы с предварительным накоплением информации и ее последующей передачей в период возникновения метеорных следов.

Общая схема радиосвязи довольно проста: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет предела совершенству.

ПЕРЕДАТЧИК

Принцип работы передатчика можно понять из простого опыта. Для его проведения понадобятся батарейка, пара отрезков провода, фабричный или самодельный компас. Примитивный компас сделать очень просто: потрите магнитом обычную стальную швейную иголку, проткните ею кусочек пенопласта или другого легкого изоляционного материала и поместите конструкцию в чашку или блюдце с водой. Стрелка импровизированного компаса обязательно должна повернуться на север. Теперь все готово к построению передатчика.

Если вы проложите провод возле стрелки компаса на расстоянии 3–5 см и затем перемкнете им полюса батарейки, то в момент подключения вы сможете заметить небольшое отклонение или движение стрелки. Это говорит о том, что вы получили магнитное поле из электрического тока (поля). Заметьте, что отклонение стрелки происходит только в момент замыкания и размыкания провода. Это говорит о том, что магнитное поле возникает только при изменении направления тока, в нашем случае в начале и прекращении. Более научно: движение электронов создает электрическое поле в проводнике, изменения которого создают вокруг проводника магнитное поле и это поле влияет на стрелку. Просто и понятно. Мы открыли явление электромагнитной индукции, которое независимо от нас еще в 1831 сделал Майкл Фарадей. Так что лавры первооткрывателя, к сожалению, принадлежат не нам.

Опыт Фарадея.

Давайте усложним опыт. Возьмем два провода и разместим их параллельно на расстоянии примерно 3–5 см друг от друга. В цепь второго провода подключим чувствительный вольтметр (тестер или микроамперметр). Теперь при подключении первого провода к батарейке, прибор должен фиксировать возникновение тока во втором проводе. Ток конечно очень мал и вашему прибору может не хватить чувствительности, чтобы его зафиксировать. Но поверьте, он есть. Мы передали энергию на небольшое расстояние. Кстати это также сделал независимо от нас Генрих Герц в 1889.

Подведем итоги:

  • Напряжение батарейки создает поток электронов в первом проводе;
  • Движущиеся электроны создают магнитное поле вокруг провода;
  • Магнитное поле влияет на второй провод и вызывает в нем движение электронов или электрическое поле;
  • Электрическое поле во втором проводе появляется только тогда, когда изменяется магнитное поле, то есть в момент включения или выключения.

Мы пришли к важному выводу, что при изменении электрического поля изменяется магнитное поле, и его энергия может передаваться без проводов. Для того чтобы магнитное поле могло распространиться на большое расстояние, нашему передатчику не хватит мощности. Для дальней радиопередачи нужен мощный генератор переменного тока – устройство, которое бы самостоятельно «включало и выключало» ток или изменяло его полярность. Причем частота колебаний генератора должна быть довольно высокой (например, для средних волн не менее 300 кГц). Чем выше частота генератора, тем меньше энергии будет затрачиваться на передачу и потребуются антенны меньших размеров. Но повышение частоты предъявляет более жесткие требования к элементам радиопередатчика. Нужны более высокочастотные (читай – дорогие) элементы и более стабильный генератор.

Сложность изготовления и настройки элементов и узлов передатчика (и приемника тоже) напрямую зависит от частоты. Больше частота – сложней изготовление и выше стоимость. В свою очередь, отклонение частоты влияет на согласованную работу передатчика и приемника. Например, отклонение частоты средневолнового (300 кГц) передатчика на 1% вызовет изменение частоты на ±3 кГц, что в принципе допустимо. А отклонение на 1% передатчика, работающего на частоте 450 МГц, даст отклонение частоты на ±4.5 МГц. А это по ширине больше длинноволнового, средневолнового и частично коротковолнового диапазонов вместе взятых!

В качестве генератора высокочастотных колебаний на заре радиотехники применялся искровые генераторы, в которых между контактами проскальзывала мощная искра, создающая магнитное поле. В качестве примера подобного устройства можно привести свечу в автомобильном двигателе, которая создает электромагнитное поле при работе, но, к сожалению, эти «радиоволны» не доставляют радости ни владельцам автомобилей, ни владельцам радиоприемников, расположенных поблизости. Затем в передатчиках стали применять электрическую дугу – непрерывную «искру». «Бытовым» примером которой является электрический сварочный аппарат. Позднее появились так называемые машинные генераторы, в которых магнитное поле создавалось электродвигателем. Технология развивалась, и в наши дни полупроводниковые приборы вытеснили искру, генераторы, вакуумные лампы и многое из того, что считалось классическим для своего времени. Но, несмотря на достижения электроники, в современных передатчиках используются те же принципы, что и на заре радио.

Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Понадобились новые открытия, и они не замедлили появиться.

Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию. Давайте рассмотрим этот процесс подробней.

Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.

Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).


Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом. Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.


Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне! Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.

ПРИЕМНИК

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.

В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн. В качестве регистратора сигналов в то время использовалось специальное устройство – когерер, представляющее собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос. Для этого требовались приборы, работающие на других принципах.

Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.

НАСТРОЙКА НА ВОЛНУ

Для работы в эфире множества радиопередатчиков без помех друг другу, каждому из них выделяется строго определенная частота. В свою очередь радиоприемник должен быть также настроен на эту частоту. Во всех радиоприемных устройствах для этого используется колебательный контур – специальное устройство, представляющее собой замкнутую цепь, состоящую из катушки индуктивности и конденсатора. Катушка (ее иногда называют просто индуктивностью) – свитый в спираль провод, а конденсатор – близко расположенные металлические пластины, которые позволяют накапливать заряд (электрическую энергию).


Колебательный контур.

Если присоединить батарею к пластинкам (более научно – обкладкам) конденсатора, на нем появится электрический заряд. Нетрудно догадаться что пластина, соединенная с отрицательным полюсом батареи, зарядится отрицательно, а соединенная с положительным – положительно. На пластинах появится электрическое напряжение, которое будет возрастать до тех пор, пока конденсатор не зарядится до предела, соответствующего его электрической емкости. Чем больше емкость конденсатора, тем больший заряд «войдет» в него при данном напряжении, тем больше электрической энергии сосредоточится в электрическом поле между пластинами.

Запасенная энергия останется в конденсаторе и после отключения батареи. Если заряженный конденсатор подсоединить к катушке индуктивности, то накопившийся заряд вызовет протекание электрического тока через катушку. А мы уже знаем, что вокруг любого проводника с электрическим током возникает магнитное поле. Электрическая энергия конденсатора превратится в катушке в магнитную энергию, которая создаст магнитное поле.

Энергия, запасенная магнитным полем, разумеется, не может исчезнуть бесследно, она должна куда-то деться (перейти в другой вид энергии). Как это ни парадоксально, но магнитная энергия вызовет возникновение в породившей его катушке электрическое поле. В катушке возникнет ток, напряжение которого начнет заряжать конденсатор.

Подведем итоги:

Внешнее воздействие.

  • Внешнее напряжение заряжает конденсатор;
  • После заряда конденсатора до максимума, напряжение отключается.

Автономная работа.

  • Конденсатор разряжается через катушку;
  • В катушке возникает электрическое поле;
  • Электрическое поле создает вокруг катушки магнитное поле;
  • После окончания разряда конденсатора магнитное поле достигает максимума (тока в цепи нет);
  • Магнитное поле начинает «возвращаться» в катушку;
  • Влияние магнитного поля вызывает в катушке электрическое поле (возникает ток);
  • На обкладках конденсатора появляется напряжение;
  • Напряжение заряжает конденсатор;
  • Заряд достигает максимума, магнитное поле минимума;
  • Конденсатор начинает разряжаться через катушку;
  • Через катушку течет ток, создавая электрическое поле… и т.д.

Следует отметить, что каждый цикл перехода энергии между электрическим и магнитным полем вызывает изменение направления тока в цепи и, следовательно, заряд на пластинах конденсатора меняется с положительного на отрицательный и наоборот. Полный цикл процессов происходящих в контуре называется колебанием, из-за чего контур и получил название колебательного.

Напрашивается идея создания «вечного двигателя» на основе колебательного контура. К сожалению «ничто не вечно под луной» и со временем колебания тока в контуре прекратятся подобно тому, как постепенно затухают колебания маятника. Ведь проводники из которых сделан контур обладают электрическим сопротивлением, из-за чего часть энергии затрачивается на его преодоление и превращается в тепло. Это основная причина энергетических потерь в контуре.

Колебания в электрическом контуре совершаются с очень большой частотой – тысячи и миллионы раз в секунду, т.е. тысячи и миллионы герц. Это частота определяется емкостью конденсатора и индуктивностью катушки. Чем больше число витков в катушке, тем меньше ее индуктивность (тем быстрее изменяется сила тока в контуре). Чем меньше емкость конденсатора, тем меньше времени нужно на его заряд и разряд. Меняя величину емкости или индуктивности, легко настроить контур на любую частоту.

ПОРА ОГЛЯНУТЬСЯ

Теперь мы можем более конкретно объяснить, как же работает передатчик.

Электромагнитное поле возникает при электрических колебаниях в контуре, т.е. в замкнутой цепи, содержащей конденсатор и катушку индуктивности. При каждом изменении направления электрического тока в контуре вокруг него возникает изменяющееся магнитное поле, а оно (согласно теории Максвелла и из практики), обязательно рождает электрическое поле. Замкнутые силовые линии полей как бы отрываются от пластин конденсатора и отправляются путешествовать в пространство.

К ЧЕМУ ВСЕ ЭТО?

Могут спросить нетерпеливые читатели. К чему столько сложностей, ведь мы говорим о радиосвязи? Дело в том, что на колебательном контуре базируется вся наука передачи и приема радиосигналов (и не только она).

При воздействии на контур внешней энергией, например, переменным электрическим током, в нем возникают так называемые вынужденные колебания. Если частота сигналов совпадет с частотой колебаний контура, возникнет явление резонанса – амплитуда колебаний достигает наибольшей величины. При этом не надо увеличивать амплитуду подводимого колебания, нужно только, чтобы частота этих колебаний равнялась частоте настройки контура. Именно это явление и позволяет настраивать приемник на определенную частоту и выделять нужную станцию среди множества других. Физическую сущность этого явления можно продемонстрировать на примере качелей. Для того чтобы они не остановились необходимо их подталкивать в такт с собственными колебаниями. Даже если каждый толчок очень слаб, он передаст качелям небольшую порцию энергии и постепенно их можно раскачать достаточно сильно. Так же можно «раскачать» и электрический контур, если подавать в него энергию в такт его собственным колебаниям. Из электрических колебаний различных частот контур выделит только ту, которая вызовет явление резонанса. Из слабых «подталкиваний» контур постепенно накопит значительную энергию. Конечно, контур не сможет собирать «толчки» и увеличивать амплитуду колебаний беспредельно. Чем больше амплитуда напряжения на контуре, тем через него течет больший ток и, естественно, тем больше потери (больше энергии рассеивается в виде тепла).


Колебательный контур «пропускает» только резонансную частоту.

Чтобы настроить контур в резонанс необходимо менять его частоту. Как уже было сказано, это достигается изменением параметров индуктивности или емкости. Технологически менять емкость проще, чем индуктивность, поэтому в основном применяют именно изменение емкости. Классическим элементом, позволяющим изменять емкость, является конденсатор переменной емкости (КПЕ), которым и осуществляют настройку на частоту резонанса.


Слева – схематичное устройство КПЕ. Справа – внешний вид двухсекционного КПЕ.

Раньше механический КПЕ был единственным устройством настройки, но в процессе развития радио появились более удобные и надежные элементы. Например, варикап – полупроводниковый элемент у которого емкость меняется изменением управляющего напряжения. Или так называемый электронный эквивалент конденсатора, который представляет собой не традиционное устройство с двумя пластинами, а интегральную схему, функционально выполняющую те же задачи.

Теперь мы знаем, как выделить из эфирного хаоса нужную частоту. Что же дальше? Ведь полученные таким образом сигналы являются высокочастотными, а наш голос – низкочастотный звуковой сигнал.

ЗАБЕГАЯ НАЗАД

Давайте сделаем небольшое отступление. Настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами. Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию. Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.

Антеннам посвящена масса всевозможных публикаций в различных источниках, кого это интересует, могут «порыться» в Интернете. Не будем усложнять и без того непростой рассказ, а приведем лишь общие тезисы.

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (в приемнике) и передающей (в передатчике) частотой.

Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.

В самом простом виде антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.

ПЕРЕХОДИМ НА ПРИЕМ

В общем случае процесс приема сигнала выглядит следующим образом:

  • Электромагнитные волны наводят в антенне токи высокой частоты;
  • Эти токи поступают на входной контур;
  • Контур выделяет из множества частот только узкую полосу, на которую он настроен;
  • Из высокочастотного сигнала необходимо выделить скрытый в нем полезный сигнал низкой частоты (звук, цифровые данные);
  • Электрический сигнал низкой частоты надо преобразовать либо в звуковой сигнал, который можно прослушать, либо, если идет обмен цифровыми данными, в вид, воспринимаемый конечным потребителем.

ДЕТЕКТОРНЫЙ ПРИЕМНИК

Процесс выделения звука или данных из высокочастотного сигнала называется демодуляцией (процесс обратный модуляции) или иначе – детектированием. Осуществляется демодуляция детектором. За долгую историю радио в качестве детектора использовались различные устройства. Вначале это были кристаллические, жидкостные или магнитные детекторы, затем появились вакуумные диоды (электронные лампы) и, наконец, в качестве детектора стали применяться полупроводниковые элементы.

Наглядно процесс детектирования высокочастотного сигнала можно рассмотреть на примере детекторного радиоприемника – прадедушки современных систем связи.


Выпрямление электрического тока диодом.


Схема детекторного приемника и форма сигналов в различных точках.
1 – ВЧ сигнал, выделенный колебательным контуром; 2 – сигнал после выпрямления детектором; 3 – НЧ сигнал, поступающий на наушники.

Из принятых антенной ВЧ сигналов выделяется тот, в резонанс с которым настроен колебательный контур. Форма сигнала в точке 1 представляет собой высокочастотный сигнал, модулированный по амплитуде. Задача детектора состоит в том, чтобы «вырезать» положительную полуволну, которая также содержит полезную информацию в виде изменения амплитуды – так называемую огибающую (показана пунктирной линией). Но высокочастотный сигнал нельзя прослушать, для этого нужна звуковая частота. Для удаления ВЧ составляющей в схему после диода включен конденсатор, емкость которого выбрана таким образом, чтобы он пропускал только низкочастотную составляющую сигнала, а высокочастотную, как говорят на радиотехническом сленге, «замыкал на землю». В результате мы имеем сигнал эквивалентный переданному радиопередатчиком.

Конечно, детекторные приемники не используются для серьезных задач и представляют скорей академический интерес. Но на их примере можно проследить процессы, протекающие в более сложных радиоприемных устройствах.

К недостаткам детекторных приемников следует отнести низкую чувствительность и избирательность (возможность принимать конкретную станцию без помех со стороны других станций с близкой частотой), слабый уровень воспроизводимого сигнала. Как видно из схемы, в детекторном радиоприемнике нет даже источника питания – он работает на энергии радиоволн. Уровень этой энергии настолько мал, что позволяет прослушивать на наушники сигналы только мощных близлежащих радиостанций. Детекторный приемник позволяет принимать только амплитудно-модулированные сигналы, которые в настоящее время используются в основном только в коротковолновом и средневолновом радиовещании. В локальном городском радиовещании и телевидении, в системах коммуникаций используют более совершенные виды модуляции: частотную, фазовую, импульсную и т.п.

Несмотря на недостатки, для многих наших пра- или прапрадедушек и бабушек детекторный приемник был единственным окном в информационный мир радио. С его помощью принимались радиосигналы в течение двух десятилетий с начала XX века. Дальнейшие изобретения более совершенных схем и элементов хотя и потеснили первый приемник, но не вытеснили полностью. Детекторные приемники совершенствовали и улучшали, украшали и дорабатывали. Для многих изготовление детекторных приемников было увлечением, а для кого-то становилось профессией. Вплоть до начала третьего тысячелетия для большинства мальчишек путь в электронику начинался с изготовления именно детекторного приемника, несмотря на его вековой возраст.

СУПЕРГЕТЕРОДИН

Революция произошла в 1913 году, когда гениальный американский изобретатель Эдвин Армстронг предложил схему супергетеродинного приемника. Схема оказалась настолько удачной, что до настоящего времени девять из десяти приемников работают на этом принципе. Смысл загадочного слова супергетеродин заключается в том, что выделенный входным контуром высокочастотный сигнал сначала преобразуется в другую частоту, постоянную для данного типа приемника, а затем на этой, так называемой промежуточной частоте, производится усиление основного сигнала и ослабление мешающих. Благодаря постоянству промежуточной частоты в супергетеродине удается сравнительно простыми средствами получить высокую чувствительность и избирательность приемника.


Блок-схема классического супергетеродинного приемника.

В чем же прелести супергетеродина и почему он завоевал такую популярность?

Как видно из блок-схемы, настройка на радиостанцию осуществляется таким же колебательным контуром, как и в детекторном приемнике. Но дальше начинается самое интересное. Диковинное слово гетеродин – это маломощный перестраиваемый генератор (кстати, давший название принципу). «Но это же не передатчик – спросите вы, – зачем в приемнике генератор?». И будете совершенно… не правы. Оказывается, генератор применяется во всех современных приемниках, но его функции отличаются от функций выполняемых в радиопередатчиках.

В приемнике генератор вырабатывает колебания, которые в дальнейшем складываются с радиочастотой. Причем, как видно из схемы, частота гетеродина синхронно изменяется вместе с настройкой входного контура (с помощью многосекционного КПЕ). Это нужно для того, чтобы частота сигнала, полученная после сложения, всегда оставалась постоянной. Это будет промежуточная частота (ПЧ). Она не зависит от выбранного диапазона настройки и от частоты принимаемой радиостанции. Постоянство ПЧ, получаемой на выходе смесителя, позволяет гораздо эффективней отфильтровать нежелательные сигналы соседних радиопередатчиков, эфирные помехи и т.п. Это связано с тем, что конструктивно легче создать качественный фильтр на постоянную частоту, нежели на меняющуюся. Промежуточная частота выбирается таким образом, чтобы ее значение не попадало в область частот передающих радиостанций (обычно 465 кГц в отечественной аппаратуре и 455 кГц – в импортной). Кроме того, относительно низкая ПЧ не так требовательна к качеству применяемых элементов (транзисторов, микросхем, фильтров, конденсаторов). Они могут быть низкочастотными и, следовательно, более дешевыми.

Кроме выделения сигнала входным колебательным контуром, сигнал проходит еще через один настраиваемый контур (после усилителя ВЧ, см. схему). Это позволяет еще в большей степени избавиться от нежелательных входных сигналов. В ламповую эпоху развития радио супергетеродинные приемники оснащались несколькими резонансными каскадами, каждый из которых подстраивался своей секцией КПЕ, управляемой общей ручкой. Появление качественных полупроводниковых приборов позволило упростить механическую часть схемы, а в дальнейшем и вовсе отказаться от механических КПЕ. В современных радиоприемных устройствах механические конденсаторы переменной емкости встречаются очень редко.

«СУПЕР-СУПЕРГЕТЕРОДИН» ИЛИ СУПЕРГЕТЕРОДИН С ДВОЙНЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 кГц).


Блок-схема супергетеродинного приемника с двойным преобразованием частоты.

Большинство приемников современных радиостанций и другого радиосвязного оборудования собираются по схеме супергетеродина с двойным преобразованием. В некоторых случаях, в частности в высококлассных любительских приемниках и в специальной технике, применяются супергетеродинные схемы с тройным преобразованием. Их принцип работы очевиден из названия.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows