Как работает 8 ядерный процессор. Multi-Core vs. Many-Core, или Зачем нужны многоядерные микропроцессоры

Как работает 8 ядерный процессор. Multi-Core vs. Many-Core, или Зачем нужны многоядерные микропроцессоры

19.08.2019

Во многом зависит от количества ядер, которые он в себя включает. Поэтому многие пользователи интересуются, как узнать количество ядер процессора. Если вас также заинтересовал этот вопрос, то эта статья должна вам помочь.

Как узнать количество ядер в процессоре с помощью Windows

Самый простой способ узнать количество ядер в процессоре, это посмотреть модель процессора и потом, посмотреть в интернете, он оснащен. Для этого нужно открыть окно «Просмотр основных сведений о вашем компьютере. Данное окно можно открыть несколькими способами:

  • Откройте меню «Пуск» и перейдите в « ». После этого откройте раздел «Система и безопасность», а потом подраздел «Система»;
  • Кликните правой кнопкой мышки по иконке «Мой компьютер» и выберите пункт «Свойства».
  • Или просто нажмите комбинацию клавиш Win+Break;

После открытия данного окна обратите внимание на .

Введите название данного процессора в поисковую систему и перейдите на официальный сайт производителя.

Таким образом, вы попадете на страницу с . Здесь нужно найти информацию о количестве ядер.

Если у вас Windows 8 или Windows 10, то вы можете узнать количество ядер процессора, (комбинация клавиш CTRL-SHIFT-ESC) на вкладке «Производительность».

В Windows 7 и более старых версиях Windows, информация о количестве ядер не отображается в «Диспетчере задач». Вместо этого там отображается отдельный график загрузки для каждого ядра. Если у вас процессор от AMD, то количество таких графиков будет равняться количеству ядер.

Но, если у вас процессор от Intel, то количеству графиков нельзя доверять, поскольку в процессоре может использоваться технология Hyper-threading, которая увеличивает реальное количество ядер в два раза.

Как узнать количество ядер процессора с помощью специальных программ

Также вы можете прибегнуть к помощи специальных программ для просмотра характеристик компьютера. В данном случае лучше всего подойдет программа CPU-Z. Запустите данную программу на своем компьютере и посмотрите значение «Cores», которое отображается внизу окна на вкладке «CPU».

Данное значение соответствует количеству ядер в вашем процессоре.

  • Tutorial

В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.

Цель статьи - показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).

Предупреждение о знаках ®, ™, в статье

Мой комментарий объясняет, почему сотрудники компаний должны в публичных коммуникациях использовать знаки авторского права. В этой статье их пришлось использовать довольно часто.

Процессор

Конечно же, самый древний, чаще всего используемый и неоднозначный термин - это «процессор».

В современном мире процессор - это то (package), что мы покупаем в красивой Retail коробке или не очень красивом OEM-пакетике. Неделимая сущность, вставляемая в разъём (socket) на материнской плате. Даже если никакого разъёма нет и снять его нельзя, то есть если он намертво припаян, это один чип.

Мобильные системы (телефоны, планшеты, ноутбуки) и большинство десктопов имеют один процессор. Рабочие станции и сервера иногда могут похвастаться двумя или больше процессорами на одной материнской плате.

Поддержка нескольких центральных процессоров в одной системе требует многочисленных изменений в её дизайне. Как минимум, необходимо обеспечить их физическое подключение (предусмотреть несколько сокетов на материнской плате), решить вопросы идентификации процессоров (см. далее в этой статье, а также мою предыдущую заметку), согласования доступов к памяти и доставки прерываний (контроллер прерываний должен уметь маршрутизировать прерывания на несколько процессоров) и, конечно же, поддержки со стороны операционной системы. Я, к сожалению, не смог найти документального упоминания момента создания первой многопроцессорной системы на процессорах Intel, однако Википедия утверждает , что Sequent Computer Systems поставляла их уже в 1987 году, используя процессоры Intel 80386. Широко распространённой поддержка же нескольких чипов в одной системе становится доступной, начиная с Intel® Pentium.

Если процессоров несколько, то каждый из них имеет собственный разъём на плате. У каждого из них при этом имеются полные независимые копии всех ресурсов, таких как регистры, исполняющие устройства, кэши. Делят они общую память - RAM. Память может подключаться к ним различными и довольно нетривиальными способами, но это отдельная история, выходящая за рамки этой статьи. Важно то, что при любом раскладе для исполняемых программ должна создаваться иллюзия однородной общей памяти, доступной со всех входящих в систему процессоров.


К взлёту готов! Intel® Desktop Board D5400XS

Ядро

Исторически многоядерность в Intel IA-32 появилась позже Intel® HyperThreading, однако в логической иерархии она идёт следующей.

Казалось бы, если в системе больше процессоров, то выше её производительность (на задачах, способных задействовать все ресурсы). Однако, если стоимость коммуникаций между ними слишком велика, то весь выигрыш от параллелизма убивается длительными задержками на передачу общих данных. Именно это наблюдается в многопроцессорных системах - как физически, так и логически они находятся очень далеко друг от друга. Для эффективной коммуникации в таких условиях приходится придумывать специализированные шины, такие как Intel® QuickPath Interconnect. Энергопотребление, размеры и цена конечного решения, конечно, от всего этого не понижаются. На помощь должна прийти высокая интеграция компонент - схемы, исполняющие части параллельной программы, надо подтащить поближе друг к другу, желательно на один кристалл. Другими словами, в одном процессоре следует организовать несколько ядер , во всём идентичных друг другу, но работающих независимо.

Первые многоядерные процессоры IA-32 от Intel были представлены в 2005 году. С тех пор среднее число ядер в серверных, десктопных, а ныне и мобильных платформах неуклонно растёт.

В отличие от двух одноядерных процессоров в одной системе, разделяющих только память, два ядра могут иметь также общие кэши и другие ресурсы, отвечающие за взаимодействие с памятью. Чаще всего кэши первого уровня остаются приватными (у каждого ядра свой), тогда как второй и третий уровень может быть как общим, так и раздельным. Такая организация системы позволяет сократить задержки доставки данных между соседними ядрами, особенно если они работают над общей задачей.


Микроснимок четырёхядерного процессора Intel с кодовым именем Nehalem. Выделены отдельные ядра, общий кэш третьего уровня, а также линки QPI к другим процессорам и общий контроллер памяти.

Гиперпоток

До примерно 2002 года единственный способ получить систему IA-32, способную параллельно исполнять две или более программы, состоял в использовании именно многопроцессорных систем. В Intel® Pentium® 4, а также линейке Xeon с кодовым именем Foster (Netburst) была представлена новая технология - гипертреды или гиперпотоки, - Intel® HyperThreading (далее HT).

Ничто не ново под луной. HT - это частный случай того, что в литературе именуется одновременной многопоточностью (simultaneous multithreading, SMT). В отличие от «настоящих» ядер, являющихся полными и независимыми копиями, в случае HT в одном процессоре дублируется лишь часть внутренних узлов, в первую очередь отвечающих за хранение архитектурного состояния - регистры. Исполнительные же узлы, ответственные за организацию и обработку данных, остаются в единственном числе, и в любой момент времени используются максимум одним из потоков. Как и ядра, гиперпотоки делят между собой кэши, однако начиная с какого уровня - это зависит от конкретной системы.

Я не буду пытаться объяснить все плюсы и минусы дизайнов с SMT вообще и с HT в частности. Интересующийся читатель может найти довольно подробное обсуждение технологии во многих источниках, и, конечно же, в Википедии . Однако отмечу следующий важный момент, объясняющий текущие ограничения на число гиперпотоков в реальной продукции.

Ограничения потоков
В каких случаях наличие «нечестной» многоядерности в виде HT оправдано? Если один поток приложения не в состоянии загрузить все исполняющие узлы внутри ядра, то их можно «одолжить» другому потоку. Это типично для приложений, имеющих «узкое место» не в вычислениях, а при доступе к данным, то есть часто генерирующих промахи кэша и вынужденных ожидать доставку данных из памяти. В это время ядро без HT будет вынуждено простаивать. Наличие же HT позволяет быстро переключить свободные исполняющие узлы к другому архитектурному состоянию (т.к. оно как раз дублируется) и исполнять его инструкции. Это - частный случай приёма под названием latency hiding, когда одна длительная операция, в течение которой полезные ресурсы простаивают, маскируется параллельным выполнением других задач. Если приложение уже имеет высокую степень утилизации ресурсов ядра, наличие гиперпотоков не позволит получить ускорение - здесь нужны «честные» ядра.

Типичные сценарии работы десктопных и серверных приложений, рассчитанных на машинные архитектуры общего назначения, имеют потенциал к параллелизму, реализуемому с помощью HT. Однако этот потенциал быстро «расходуется». Возможно, по этой причине почти на всех процессорах IA-32 число аппаратных гиперпотоков не превышает двух. На типичных сценариях выигрыш от использования трёх и более гиперпотоков был бы невелик, а вот проигрыш в размере кристалла, его энергопотреблении и стоимости значителен.

Другая ситуация наблюдается на типичных задачах, выполняемых на видеоускорителях. Поэтому для этих архитектур характерно использование техники SMT с бóльшим числом потоков. Так как сопроцессоры Intel® Xeon Phi (представленные в 2010 году) идеологически и генеалогически довольно близки к видеокартам, на них может быть четыре гиперпотока на каждом ядре - уникальная для IA-32 конфигурация.

Логический процессор

Из трёх описанных «уровней» параллелизма (процессоры, ядра, гиперпотоки) в конкретной системе могут отсутствовать некоторые или даже все. На это влияют настройки BIOS (многоядерность и многопоточность отключаются независимо), особенности микроархитектуры (например, HT отсутствовал в Intel® Core™ Duo, но был возвращён с выпуском Nehalem) и события при работе системы (многопроцессорные сервера могут выключать отказавшие процессоры в случае обнаружения неисправностей и продолжать «лететь» на оставшихся). Каким образом этот многоуровневый зоопарк параллелизма виден операционной системе и, в конечном счёте, прикладным приложениям?

Далее для удобства обозначим количества процессоров, ядер и потоков в некоторой системе тройкой (x , y , z ), где x - это число процессоров, y - число ядер в каждом процессоре, а z - число гиперпотоков в каждом ядре. Далее я буду называть эту тройку топологией - устоявшийся термин, мало что имеющий с разделом математики. Произведение p = xyz определяет число сущностей, именуемых логическими процессорами системы. Оно определяет полное число независимых контекстов прикладных процессов в системе с общей памятью, исполняющихся параллельно, которые операционная система вынуждена учитывать. Я говорю «вынуждена», потому что она не может управлять порядком исполнения двух процессов, находящихся на различных логических процессорах. Это относится в том числе к гиперпотокам: хотя они и работают «последовательно» на одном ядре, конкретный порядок диктуется аппаратурой и недоступен для наблюдения или управления программам.

Чаще всего операционная система прячет от конечных приложений особенности физической топологии системы, на которой она запущена. Например, три следующие топологии: (2, 1, 1), (1, 2, 1) и (1, 1, 2) - ОС будет представлять в виде двух логических процессоров, хотя первая из них имеет два процессора, вторая - два ядра, а третья - всего лишь два потока.


Windows Task Manager показывает 8 логических процессоров; но сколько это в процессорах, ядрах и гиперпотоках?


Linux top показывает 4 логических процессора.

Это довольно удобно для создателей прикладных приложений - им не приходится иметь дело с зачастую несущественными для них особенностями аппаратуры.

Программное определение топологии

Конечно, абстрагирование топологии в единственное число логических процессоров в ряде случаев создаёт достаточно оснований для путаницы и недоразумений (в жарких Интернет-спорах). Вычислительные приложения, желающие выжать из железа максимум производительности, требуют детального контроля над тем, где будут размещены их потоки: поближе друг к другу на соседних гиперпотоках или же наоборот, подальше на разных процессорах. Скорость коммуникаций между логическими процессорами в составе одного ядра или процессора значительно выше, чем скорость передачи данных между процессорами. Возможность неоднородности в организации оперативной памяти также усложняет картину.

Информация о топологии системы в целом, а также положении каждого логического процессора в IA-32 доступна с помощью инструкции CPUID. С момента появления первых многопроцессорных систем схема идентификации логических процессоров несколько раз расширялась. К настоящему моменту её части содержатся в листах 1, 4 и 11 CPUID. Какой из листов следует смотреть, можно определить из следующей блок-схемы, взятой из статьи :

Я не буду здесь утомлять всеми подробностями отдельных частей этого алгоритма. Если возникнет интерес, то этому можно посвятить следующую часть этой статьи. Отошлю интересующегося читателя к , в которой этот вопрос разбирается максимально подробно. Здесь же я сначала кратко опишу, что такое APIC и как он связан с топологией. Затем рассмотрим работу с листом 0xB (одиннадцать в десятичном счислении), который на настоящий момент является последним словом в «апикостроении».

APIC ID
Local APIC (advanced programmable interrupt controller) - это устройство (ныне входящее в состав процессора), отвечающее за работу с прерываниями, приходящими к конкретному логическому процессору. Свой собственный APIC есть у каждого логического процессора. И каждый из них в системе должен иметь уникальное значение APIC ID. Это число используется контроллерами прерываний для адресации при доставке сообщений, а всеми остальными (например, операционной системой) - для идентификации логических процессоров. Спецификация на этот контроллер прерываний эволюционировала, пройдя от микросхемы Intel 8259 PIC через Dual PIC, APIC и xAPIC к x2APIC .

В настоящий момент ширина числа, хранящегося в APIC ID, достигла полных 32 бит, хотя в прошлом оно было ограничено 16, а ещё раньше - только 8 битами. Нынче остатки старых дней раскиданы по всему CPUID, однако в CPUID.0xB.EDX возвращаются все 32 бита APIC ID. На каждом логическом процессоре, независимо исполняющем инструкцию CPUID, возвращаться будет своё значение.

Выяснение родственных связей
Значение APIC ID само по себе ничего не говорит о топологии. Чтобы узнать, какие два логических процессора находятся внутри одного физического (т.е. являются «братьями» гипертредами), какие два - внутри одного процессора, а какие оказались и вовсе в разных процессорах, надо сравнить их значения APIC ID. В зависимости от степени родства некоторые их биты будут совпадать. Эта информация содержится в подлистьях CPUID.0xB, которые кодируются с помощью операнда в ECX. Каждый из них описывает положение битового поля одного из уровней топологии в EAX (точнее, число бит, которые нужно сдвинуть в APIC ID вправо, чтобы убрать нижние уровни топологии), а также тип этого уровня - гиперпоток, ядро или процессор, - в ECX.

У логических процессоров, находящихся внутри одного ядра, будут совпадать все биты APIC ID, кроме принадлежащих полю SMT. Для логических процессоров, находящихся в одном процессоре, - все биты, кроме полей Core и SMT. Поскольку число подлистов у CPUID.0xB может расти, данная схема позволит поддержать описание топологий и с бóльшим числом уровней, если в будущем возникнет необходимость. Более того, можно будет ввести промежуточные уровни между уже существующими.

Важное следствие из организации данной схемы заключается в том, что в наборе всех APIC ID всех логических процессоров системы могут быть «дыры», т.е. они не будут идти последовательно. Например, во многоядерном процессоре с выключенным HT все APIC ID могут оказаться чётными, так как младший бит, отвечающий за кодирование номера гиперпотока, будет всегда нулевым.

Отмечу, что CPUID.0xB - не единственный источник информации о логических процессорах, доступный операционной системе. Список всех процессоров, доступный ей, вместе с их значениями APIC ID, кодируется в таблице MADT ACPI .

Операционные системы и топология

Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.

В Linux информация о топологии содержится в псевдофайле /proc/cpuinfo , а также выводе команды dmidecode . В примере ниже я фильтрую содержимое cpuinfo на некоторой четырёхядерной системе без HT, оставляя только записи, относящиеся к топологии:

Скрытый текст

ggg@shadowbox:~$ cat /proc/cpuinfo |grep "processor\|physical\ id\|siblings\|core\|cores\|apicid" processor: 0 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 0 initial apicid: 0 processor: 1 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 1 initial apicid: 1 processor: 2 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 2 initial apicid: 2 processor: 3 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 3 initial apicid: 3

В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:

Скрытый текст

user@host:~$ sysctl kern.sched.topology_spec kern.sched.topology_spec: 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 0, 1 THREAD groupSMT group 2, 3 THREAD groupSMT group 4, 5 THREAD groupSMT group 6, 7 THREAD groupSMT group

В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.

Нельзя разобраться с этим вопросом, не зная, что собой представляет 4-х ядерный процессор. С одно-, двух- и трехъядерными процессорами все просто: они имеют одно, два или три ядра соответственно. А что касается 4-х ядерного, то тут не все так, как кажется на первый взгляд.

2-х или 4-х ядерный процессор?

Большинство людей ошибаются, думая, что частота каждого ядра складывается. Раз 2.5 Ггц частота ядер, а ядра 4, то значит 2.5*4= 10Ггц. Но это не так: частота всегда одна — 2.5 Ггц. Почему же частота не складывается? Потому, что с этой частотой параллельно работает каждый процессор.

Порция — это часть времени, на вычисление которой процессор выделяет ресурсы всем потокам, попавшим в процессор. Это как 4-ре магистрали с предельной скоростью 60 км/час (2.5 Ггц): у нас есть грузовики, которые должны доставить нам товары (это наши кусочки программы или порции программы), и чтобы нам повысить скорость доставки (повысить работоспособность системы), нам нужно использовать все 4-ре магистрали или повысить предельную скорость (3.0 Ггц). Но для большинства программ невозможно работать в несколько потоков, так как они работают в один поток и способны использовать лишь одну магистраль (а значит нашей программе будет выделено лишь 25% общей мощности процессора) потому, что в программе логика должна выполняться последовательно (поточно), и если нарушить последовательность, нарушится логика, а это приведет к сбоям. Новые программы стараются использовать мультипрограммирование — возможность работать в несколько потоков (наших магистралей), а не в одну, как большинство программ сейчас. Игры, по большей части тоже оптимизированы под многопоточность, но основной поток обычно работает в один. Хоть сейчас и пытаются разделить его на несколько, чтобы облегчить и ускорить. Поэтому для игр или приложений, которые обычно работают в один или два потока, лучше взять 2-ух ядерный процессор.

Если частота у двухъядерного такая же, как у четырехъядерного, то лучше конечно взять четырехъядерный, ведь у нас же одновременно работает огромное количество программ, пускай и слабых по нагрузке. Мы выиграем производительность системы за счет того, что все другие процессы могут быть вытеснены на другое ядро при полной загрузке одного из них. Но обычно частота у новых двухъядерных выше, чем у новых четырехъядерных. Именно поэтому при тестах в играх побеждают 2-ух ядерные с большей частотой, чем 4-ех ядерные с меньшей.

Теперь об очередях:

Теперь поймем, что при переходе от одноядерного к двуядерному, скорость возрастает быстрее не только за счет одновременной обработки ядрами, но и за счет ожидания и очереди на процессоре.

Частота у одноядерного процессора и двухъядерного одна и та же, но работает компьютер быстрее с 2-я ядрами. Дело в мультипрограммировании, когда осуществляется переход с одноядерного на двухъядерный, то скорость возрастает в разы. А мультипрограммирование — это работа с потоками. Представим себе 2 потока, например, работа Windows и запущенная компьютерная игра. Если у нас имеется одно ядро, то обрабатывается последовательно то игра (порция), то работа Windows (порция). Процессам приходиться ждать очереди, т. е. когда «кусочек» игры обрабатывается, то Windows приходится ждать конца обработки игры (порции игры). Когда мы перешли на 2 ядра, то даже с той же частотой, как у одноядерного, компьютер начинает более быструю обработку, так как очередь уменьшается в 2 раза.

Объясню подробнее на примере 100 приложений, если у нас 1 ядро, то 1 приложение обрабатывается, остальные 99 ждут своей очереди. И чем длиннее очередь, тем дольше идет обновления, и тогда мы чувствуем, что у нас тормозит система. А когда у нас 2 ядра, то очередь делится наполовину, т. е. 50 приложений на одном и 50 на другом, следовательно, их проще и быстрее обновлять. Важно знать, что очередь становится меньше и наши приложения быстрее обновляются.

Для теста потока запустите winrar, чтобы сжимать большой файл, и посмотрите в диспетчере (он сжимает в один поток), сколько ресурсов процессора он будет использовать (25%- на 4-ех ядерном и 50% на 2-ух). Из этого следует, что нашей игре, если она работает в один поток в четырехъядерном процессоре, будет выделено 25 % мощности процессора, 50%, если в двухъядерном. В играх у нас многопоточность присутствует, но главный поток в игре все равно будет обрабатываться на четверть процессора (в четырехъядерном).

Все рассматривалось упрощенно, 2-х ядерный с большей частотой подходит лучше для игр, так как больше частоты выделяется одному потоку, а 4-х ядерный подходит для много-поточных данных, например, множество запущенных одновременно приложений.

У 2-ух ядерного процессора i5 есть технология позволяющая имитировать работу системы, как с 4-х ядерным процессором. Фактически есть только 2 ядра, но для Windows имитируется работа 4-х ядер. 4 очереди (потока) по 2 очереди (потока) на ядро обрабатываются по очереди. Каждое ядро берет по порции каждого из потоков, то есть он способен быть четырехъядерным.

В наше время принято считать, что двухъядерный процессор – это удел бюджетных компьютеров. «Настоящий» CPU начинается с 4-х ядер. Долгое время этого действительно было достаточно, и многочисленное ПО с успехом использовало все предоставляемые ресурсы. Сейчас же вполне обычными стали 6-ядерные процессоры и далее более «ядреные». Насколько актуально увеличение многопоточности в играх? Ресурс uk.hardware.info провел тестирование с целью определить, сколько ядер нужно для игр, где предел разумности наращивания этих вычислительных блоков при выборе процессора и, соответственно, трат на отнюдь не дешевые «камни». Предлагаю вольный перевод этого тестирования.

Цель проверки и участники

Цель – определить, сколько денег готовить для покупки процессора, о котором можно будет не беспокоиться, что он станет узким местом в собираемой игровой системе. Естественно, это тестирование интересно для того, чей бюджет, выделенный для приобретения комплектующих, небезграничен, и хочется наиболее эффективно вложить каждый рубль в гигагерцы (гигабайты и т. п.).

Попутно попытаемся решить, во что инвестировать лучше всего, в дополнительные ядра процессора, или в более быстродействующую видеокарту, или же купить . Важно понять, насколько та или иная игра способна работать с несколькими ядрами и насколько увеличивается быстродействие (если увеличивается вообще) c ростом их количества.

Для тестирования был собран следующий стенд:

  • Процессор — Intel Core i9 7900X Skylake-X 10-core CPU @ 4.5 ГГц.
  • Материнская плата — ASUS Strix X299-XE Gaming.

Также проверки проводились с использованием процессора AMD, для чего был собран следующий стенд:

  • Процессор – AMD Ryzen 7 2700X на штатных частотах и с использованием всех доступных ядер.
  • Материнская плата — Asus Crosshair VII Hero WiFi.
  • Память — G.Skill Trident Z 32 ГБ DDR4-3200 CL14.
  • Видеокарта — NVidia GeForce GTX 1080 Ti.
  • Накопитель — 2x SSD Samsung 840 Evo 1ТБ.
  • ОС — Windows 10 64-bit (1803 Update).

Выбранный процессор Intel позволяет отключать ядра и потоки для имитации CPU с разной конфигурацией вычислительных блоков.

Тестирование осуществлялось в нескольких разрешениях экрана: FullHD, WQHD и Ultra HD при средних и ультра настройках графики. Забегая немного вперед, в высоких разрешениях «бутылочным» горлышком становилась видеокарта, что снижает ценность проверки процессоров, но все же кое-какую информацию к размышлению дает.

Результаты тестирования

Assassin’s Creed Origins (DX11)

Игра хорошо масштабируется, но только до определенного предела.

Двухъядерный процессор явно уже не годится, т. к. существенно снижает быстродействие, а оптимальным оказывается наличие 4-х ядер, причем в конфигурации с 8-ю потоками, либо же процессор с 6-ю ядрами без HyperThreading. Дальнейшее увеличение ядер если и приносит результат, то уже не столь существенный.

Call of Duty: WW2 (DX11)

Игра, мягко говоря, не очень в курсе с тем, что делать с увеличением количества ядер.

Разница, хотя и весьма небольшая, наблюдается разве что при разрешении FullHD при средних настройках. С увеличением качества картинки минимальный разброс результатов вполне можно списать на погрешности измерения.

Destiny 2 (DX11)

Этой игре нужен процессор с 4-мя ядрами, как минимум. Впрочем, большее их количество оказывается невостребованным. Справедливости ради надо сказать, что это верно для невысоких разрешений (не более FullHD) и для средне-высоких настроек графики.

С возрастанием нагрузки на видеокарту роль процессора в быстродействии снижается, и разницы между самым «хилым» двухъядерником и топовым CPU сводится к нулю.

F1 2017 (DX11)

Здесь похожее поведение, что и в прошлой игре.

Двухъядерник заметно снижает производительность, но, опять-таки, при не самых высоких разрешениях. Начиная с ультра настроек в 1440p разница между «камнями» минимальна. Впрочем, несколько выделяется 10-ядерник в некоторых режимах. Да и Ryzen очень хорошо себя чувствует именно при высокой нагрузке.

Far Cry 5 (DX11)

Еще одна игра, которая равнодушна к количеству ядер у процессора.

При высоких разрешениях чуть выделяются CPU в конфигурации 6C/12T и 10C/20T, но, право, увеличение FPS настолько незначительно, что это не оправдывает переплату за эти ядра.

Final Fantasy XV (DX11)

Можно сказать с уверенностью, что двухъядерный процессор — «тормоз» для этой игры в разрешениях FullHD и 1440p.

Впрочем, и к варианту с 4-мя ядрами и без HyperThreading могут быть претензии. Все что выше – показывает очень близкие результаты. AMD Ryzen хорош во всех режимах.

Fortnite (DX11)

Единственное заметное различие – при разрешении FullHD и средних настройках качества изображения. Отстали двухъядерный Intel и, как ни странно, у AMD результаты ниже примерно на 15%. Остальная группа «товарищей» держится очень сплоченно. При увеличении нагрузки на графический процессор разница между CPU нивелируется.

Ghost Recon: Wildlands (DX11)

Еще одно подтверждение, что два ядра по нашим временам уже мало.

В условиях, когда видеокарта еще не загружена «под завязку», недостаток вычислительных блоков проявляется заметно.

Можно заметить, что во всех режимах 6-ядерники уступают 4-ядерникам, причем наличие двух дополнительных «железных» ядер уступает четырем потокам HyperThreading. Справедливости ради, речь идет о разнице в 1-2 FPS, и этим вполне можно пренебречь.

Middle Earth: Shadow of War (DX11)

Опять привычная уже картина – при невысокой нагрузке на видеокарту, двухъядерник отстает.

Начиная с конфигурации 4С/4Т разницы между процессорами практически никакой.

Need for Speed: Payback (DX11)

Движок Frostbite, на котором построена эта игра, знает, как распоряжаться предоставляемыми ресурсами.

Правда, наиболее заметный прирост происходит при переходе с 2-х на 4 ядра, причем, желательно, чтобы был еще и HyperThreading. Либо 6 ядер в любой конфигурации.

PlayerUnknown’s Battlegrounds (DX11)

Хорошо чувствуют себя процессоры с 4-мя ядрами и выше.

Двухъядерник уступает в большинстве вариантов. Причем, наибольший эффект достигается при наличии 6-ти ядер.

Prey (DX11)

Игра плохо масштабируется по ядрам.

Разве что на максимальных настройках в FullHD процессоры выстраиваются в соответствии с иерархией. А в 4K двухъядерник позволяет получить то же количество FPS, что и десятиядерник. Причем, заметно явное благоволение к наличию HyperThreading, хотя эффект от его использования исчисляется несколькими FPS.

В низких разрешениях хуже всего проявляет себя AMD, уступая всем и заметно. Правда, чем выше разрешение и настройки графики, тем оправданнее использование именно этого «камня».

Total War: Warhammer (DX11)

Игра хорошо относится к наличию у процессора 6 ядер.

В большинстве случаев это оказывается оптимальным вариантом.

The Witcher 3 (DX11)

«Ведьмак» слабо реагирует на многоядерность.

Практически все преимущество дает переход с 2-х на 4 ядра. Да и то, проявляется это при FullHD и средних настройках графики.

Battlefield 1 (DX12)

Движок Frostbite хорошо масштабируется вплоть до 6 ядер и 12 потоков.

Дальнейшее увеличение «крутизны» процессора уже никак не сказывается. Оптимальным выбором оказываются именно шестиядерники, или, в крайнем случае, четырехъядерник, но обязательно с HyperThreading «на борту».

Неплохо выглядит AMD Ryzen, хотя и проигрывая в разрешении FullHD, но в 1440p показывает практически те же результаты, в то время как Intel «опускается» до уровня AMD.

Forza Motorsport 7 (DX12)

Игра также хорошо масштабируется, и наличие 8 потоков или 6 ядер – оптимальная конфигурация для Forza Motorsport 7. Все, что ниже – будет являться «узким местом» в системе.

The Division (DX12)

Двух ядер для этой игры мало.

Нужно хотя бы вдвое больше, и желательно с HyperThreading. Дальнейшее увеличение многоядерности прибавления FPS не приносит. И опять, наличие 8 потоков или 6 «железных» ядер – самый оптимальный вариант.

Wolfenstein 2: The New Colossus (Vulkan)

Игра, использующая собственный движок и собственное же APi, больше всего нагружает видеокарту, а какой используется процессор – это уже не столь важно. Небольшое увеличение FPS при наличии 6 ядер наблюдается, но разница укладывается в несколько процентов.

Заключение. Многоядерность – так сколько ядер нужно для игр?

Как показало тестирование, наиболее «ядерозависимыми» являются игры Forza Motorsport 7, Assassin’s Creed: Origins, Battlefield 1 и Need For Speed Payback. Естественно, речь идет, за редким исключением, о разрешениях FullHD и не самых высоких настройках графики.

Разница в производительности между двухъядерником и 10-ядерником может доходить до двукратной. Использование 4-х ядер снижает этот гандикап вдвое, доводя до 50%, а наличие HyperThreading сводит притягательность топовых «камней» почти на нет. В ряде случаев заметна разница при наличии удвоенного числа потоков по отношению к ядрам.

С ростом разрешения экрана в подавляющем большинстве случаев разницы между CPU нет, т. к. в данном случае основная нагрузка ложится на видеопроцессор.

Если говорить о привлекательности с точки зрения показываемой процессорами производительности, то ситуация во многом зависит от того, в каком разрешении запускаются игры.

  • 1080p (FullHD). При средних настройках графики оптимальным выбором являются процессоры начиная с 4C/8T до 6C/12T. Невысокая загрузка видеокарты, особенно топовой, выявляет недостаток производительности двухъядерного процессора. При переходе же на ультра настройки, разница между CPU сокращается. AMD Ryzen показывает результаты на уровне интеловского 4C/8T.
  • 1440p. Здесь больше сказывается производительность видеокарты, нежели процессора, что отражается в небольшой разнице между процессорами. Даже двухъядерник уступает от силы 7-8%, и то при средних настройках графики переход к «ультре» снижает процессорозависимость. Очень привлекательным становится AMD.
  • 2160p. Все зависит от возможностей видеокарты. Преимущества того или иного CPU исчисляются долями процента, максимум – 1-2%, чем вполне можно пренебречь. Преимуществ у мощного, и дорогого, 10-ядерного CPU перед более доступным 4-ядерным практически нет.

Если переходить к выбору CPU, то, строго говоря, даже такие бюджетные решения, как Intel Pentium G4560, Pentium G5400 и сходные с ними вполне справляются со своей задачей. И все же не стоит обольщаться. Более мощные процессоры позволят получить больше кадров в минуту, обеспечить отсутствие или сведение к минимуму «проседания» FPS за счет более высоких вычислительных возможностей. Время двухъядерников уходит.

Сложно представить ситуацию, когда к топовой видеокарте (а, скорее всего, и к не самой дешевой материнке, памяти и т. п.) в компанию приобретается бюджетный CPU. Раскрыть возможности видеокарты не удастся. Разве что на высоких разрешениях.

А вот вариант с 4C/12T или 6C/6T выглядит уже гораздо более привлекательным. Причем, вариант 6C/12T более-менее заметных преимуществ не дает. Наличие же 10 и более ядер для игр никакого значения не имеет.

При переходе к высоким разрешениям внимание должно переключаться не столько на процессор, сколько на возможности и класс видеокарты. Именно она становится ограничителем в достижении больших значений FPS и высоких настроек графики.

Что же касается многоядерности, то тут возникает несколько другая ситуация. Если все же FullHD для вас мало, то, учитывая невысокое масштабирование игр по ядрам, лучше отдать предпочтение более высокой частоте их работы, нежели количеству, но с меньшим количеством МГц. А если еще и будет возможность разогнать такой процессор, то тогда совсем все хорошо.

Если рассматривать вопрос, что лучше, процессор с HyperThreading или без, то, если судить по результатам тестирования, CPU c 4С/8Т практически соответствует 6С/6Т, хотя последний чуть лучше в низких разрешениях. Ну а если брать комбинацию 6С/12Т, то получаем практически идеальный вариант, который позволит получить максимальное количество FPS, и при этом можно не бояться появления каких-либо «провалов» при большой нагрузке.

Это все ситуация на сегодняшний день. А что будет завтра, с выходом новых игр или новых их версий? Было бы неплохо знать, насколько разработчики уделяют времени масштабированию игровых движков, но сие знание тайное, и как-то не особо афишируемое. На данный момент это явно не в главных приоритетах у создателей игр.

С одной стороны, использование 4-х ядер/потоков в подавляющем большинстве случаев гарантирует максимальную или близкую к таковой производительность в разрешениях не более FullHD. Посему и заниматься распараллеливанием вычислений надобности нет.

Что же касается перехода на 2К, 4К и выше, тут понадобятся уже более серьезные вычислительные мощности, но возникает другая проблема – существующие видеопроцессоры пока что с трудом «переваривают» такую нагрузку, а посему, и заниматься масштабированием на несколько ядер необходимости нет, т. к. 4-6 вполне справляются с тем, чтобы загрузить видеокарту «по ватерлинию».

Вот выйдет новое поколение графических чипов (ожидаемое в скором времени NVidia 11-го поколения), тогда и посмотрим.

И все это приводит к следующему. Даже для топовой, или предтоповой, игровой системы лучшим выбором является процессор минимум с 4-мя ядрами и 8-ю потоками, или же вариант с 6-ю ядрами. Идеальный вариант, если у них еще будет разгонный потенциал.

Это, кстати, оптимально и по цене, ибо такие «камни» вполне доступны. Например,6-ядерный Intel Core i5 8600K обойдется примерно в 18000 руб., вариант с HyperThreading в виде Intel Core i7 8700K уже тысяч на 6 дороже. Кстати, 4-ядерный 8-поточный i7 7700K идет примерно в ту же цену. Чуть дешевле, примерно на 1000 руб., AMD Ryzen 7 2700X.

Для примера, самый дешевый 10-ядерный Intel Core i9 7900X, который может дать дополнительные несколько FPS, обойдется минимум вдвое дороже, чем i7 8700K. Не забудем, что это уже совсем другой уровень, и материнская плата понадобится уже совсем другая, с сокетом 2066.

Так что, многоядерность – это неплохо, но и про мегагерцы забывать не стоит, игры их любят. Хороших и быстрых процессоров, высоких FPS и победы над врагами!

От количества ядер в центральном процессоре сильно зависит общая производительность системы, особенно в многозадачном режиме. Узнать их количество можно как при помощи стороннего ПО, так и стандартными методами Windows.

Большинство процессоров сейчас 2-4 ядерные, но имеются дорогие модели для игровых компьютеров и дата-центров на 6 и даже 8 ядер. Ранее, когда центральный процессор имел всего одно ядро, вся производительность заключалась в частоте, а работа с несколькими программами одновременно могла полностью «повесить» ОС.

Определить количество ядер, а также посмотреть на качество их работы, можно при помощи решений, встроенных в саму Windows, или сторонних программ (в статье будут рассмотрены самые популярные из них).

Способ 1: AIDA64

– это популярная программа для мониторинга производительности компьютера и проведения различных тестов. ПО платное, но есть тестовый период, которого хватит для того, чтобы узнать количество ядер в ЦП. Интерфейс AIDA64 полностью переведён на русский язык.

Инструкция выглядит следующим образом:


Способ 2: CPU-Z

– бесплатная программа, которая позволяет получить всю основную информацию о комплектующих компьютера. Имеет простой интерфейс, который переведён на русский язык.

Чтобы узнать количество ядер при помощи этого ПО, достаточно просто его запустить. В главном окне найдите в самом низу, в правой части, пункт «Cores» . Напротив него будет написано количество ядер.

Способ 3: Диспетчер задач

Данный способ подходит только для пользователей ОС Windows 8, 8.1 и 10. Выполните эти действия, чтобы узнать количество ядер таким способом:


Способ 4: Диспетчер устройств

Этот способ подходит для всех версий Windows. Используя его, следует помнить, что на некоторые процессоры от Intel информация может быть выдана неверно. Дело в том, что ЦП от Intel используют технологию Hyper-threading, которая делит одно ядро процессора на несколько потоков, тем самым повышая производительность. Но при этом «Диспетчер устройств» может видеть разные потоки на одном ядре как несколько отдельных ядер.

Пошаговая инструкция выглядит так:


Самостоятельно узнать количество ядер в центральном процессоре несложно. Также можно просто посмотреть характеристики в документации к компьютеру/ноутбуку, если есть под рукой. Или «загуглить» модель процессора, если вы её знаете.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows