Вложенные запросы и соединения в sql. Вложенные запросы. Условное выражение CASE

Вложенные запросы и соединения в sql. Вложенные запросы. Условное выражение CASE

08.03.2019

Графические файлы, с которыми многие пользователи работают почти каждый день, в современном мире представлены в самых разных форматах, некоторые из которых не могут взаимодействовать между собой никак. Но и не все программы для просмотра изображений могут спокойно открывать файлы различных расширений.

Для начала стоит разобраться, что же из себя представляет сам файл PSD и как открыть такой формат с помощью различных программ для просмотра и редактирования графических документов.

Файл с расширением PSD — это растровый формат хранения графической информации. Создан он специально для Adobe Photoshop. Формат имеет одно важное отличие от стандартного JPG – сжатие документа производится без потери данных, поэтому файл всегда будет в исходном разрешении.

Компания Adobe не сделала формат файла общедоступным, поэтому не все программы могут спокойно открывать PSD и редактировать его. Рассмотрим несколько программных решений, которые являются очень удобными для просмотра документа, а некоторые из них позволяют еще и редактировать его.

Способ 1: Adobe Photoshop

Логично, что самой первой программой, которая будет упоминаться в способах открытия файла PSD, будет приложение Adobe Photoshop, для которого и создавалось расширение.

Photoshop позволяет производить над файлом самые различные действия, среди которых стандартный просмотр, простое редактирование, редактирование на уровне слоев, конвертирование в другие форматы и многое другое. Среди минусов программы стоит отметить то, что она является платной, поэтому не все пользователи могут себе ее позволить.

Открывается PSD через продукт от Adobe довольно просто и быстро, нужно выполнить всего несколько шагов, которые будут подробнее описаны далее.


У приложения от компании Adobe есть бесплатный аналог, который ничем не хуже оригинальной версии от именитой компании, но им могут пользоваться абсолютно все. Разберем его во втором способе.

Способ 2: GIMP

Как уже было сказано выше, GIMP – бесплатный аналог Adobe Photoshop, который отличается от платной программы лишь некоторыми нюансами, особо ненужными почти для всех пользователей. Скачать же GIMP может любой пользователь.

Среди плюсов можно отметить то, что она поддерживает все те же форматы, что может открывать и редактировать Photoshop, GIMP позволяет не только открывать PSD, но и редактировать его в полном объеме. Из минусов же пользователи замечают долгую загрузку программы из-за большого количества шрифтов и довольно неудобный интерфейс.

Открывается файл PSD через GIMP почти как через Adobe Photoshop, лишь с некоторыми особенностями – все диалоговые окна открываются через программу, что довольно удобно, когда компьютер не самый быстрый.


К сожалению, больше нет достойных программ, которые позволяют не только открывать PSD-файлы, но и редактировать их. Только Photoshop и GIMP позволяют работать с данным расширением «в полную силу», поэтому дальше рассмотрим удобные средства просмотра PSD.

Способ 3: PSD Viewer

Пожалуй, самой удобной и простой программой для просмотра файлов PSD является PSD Viewer, который имеет четкую задачу и работает с наивысшей скоростью. Сравнивать PSD Viewer с Photoshop или GIMP бессмысленно, так как функционал в этих трех приложениях значительно отличается.

Среди плюсов PSD Viewer можно отметить быструю скорость работы, простой интерфейс и отсутствие лишнего. Можно сказать, что минусов у программы нет, так как она точно выполняет свою функцию – дает пользователю возможность просматривать документ PSD.

Открывать файл с расширением от Adobe в PSD Viewer очень просто, даже сам Photoshop не может похвастаться такой простотой, но и этот алгоритм надо осветить, чтобы ни у кого не осталось вопросов.


PSD Viewer является одним из немногих решений, что позволяет с такой скоростью открывать графические изображения, потому что даже стандартные приложения Microsoft не способны на это.

Способ 4: XnView

XnView чем-то схож с PSD Viewer, но здесь есть возможность производить некоторые манипуляции над файлом. Эти действия никак не связаны с кодированием изображения и с глубоким редактированием, можно лишь менять размер и обрезать картинку.

К плюсам программы можно отнести некоторое количество инструментов для редактирования и стабильность работы. Из минусов обязательно стоит обратить внимание на довольно сложный интерфейс и английский язык, что не всегда удобно. Теперь посмотрим, как открыть PSD через XnView.


XnView работает очень быстро и стабильно, что не всегда можно сказать о PSD Viewer, поэтому можно спокойно пользоваться программой даже на загруженной системе.

Способ 5: IrfanView

Последнее удобное решение, которое позволяет просматривать PSD – IrfanView. Сразу стоит сказать, что отличий от XnViewe почти нет, поэтому плюсы и минусы у программы такие же. Лишь можно отметить, что данный продукт поддерживает русский язык.

Алгоритм открытия файла PSD аналогичен предыдущему способу, делается все быстро и просто.


Почти все программы из статьи работают одинаково (последние три), они быстро открывают файл PSD, а пользователь может с удовольствием просматривать этот файл. Если вы знаете еще какие-то удобные программные решения, способные открывать PSD, то делитесь в комментариях с нами и другими читателями.

Часто при выборке данных бывает необходимо объединить информацию из нескольких связанных таблиц. Сделать это можно посредством вложенных запросов, либо при помощи соединения с помощью SQL.

Вложенные запросы

В рамках нашего примера, допустим, что нам понадобилось узнать имена узлов, которые посещали сайт www.dom2.ru. Требуемую информацию можно получить запросом:

SELECT hst_name FROM hosts WHERE hst_pcode IN (SELECT vis_hstcode FROM visits, sites WHERE (sit_pcode = vis_sitcode) AND (sit_name LIKE "www.dom2.ru"));

Рассмотрим этот запрос более пристально. Первый оператор SELECT нужен для выборки имен узлов. Чтобы выбрать требуемые нам имена, в запросе указана секция WHERE, в которой первичный ключ таблицы «Узлы» (hst_pcode) проверяется на принадлежность множеству (оператор IN). Судя по всему, множество для проверки на принадлежность должен вернуть второй оператор SELECT, находящийся в скобках. Рассмотрим его отдельно:

SELECT vis_hstcode FROM visits, sites WHERE (sit_pcode = vis_sitcode) AND (sit_name LIKE "www.dom2.ru")

Для содержимого таблиц в нашем примере, вложенный запрос вернет следующее множество значений

Соединение с помощью SQL

Как и говорилось выше, одним из способов выборки данных из нескольких таблиц является соединение таблиц с помощью SQL. Основная цель такого соединения - создание нового отношения, которое будет содержать данные из двух или более исходных отношений.

Внутреннее соединение

Рассмотрим пример:

SELECT hst_name, sit_name, vis_timestamp FROM hosts, visits, sites WHERE (hst_pcode = vis_hstcode) AND (vis_sitcode = sit_pcode)

Данный запрос вернет следующие данные

hst_name sit_name vis_timestamp
ws1 www.dom2.ru 2012-08-01 07:59:58.209028
ws1 www.vkontakte.ru 2012-08-01 08:00:10.315083
1-1 www.vkontakte.ru 2012-08-01 08:00:20.025087
1-2 www.opennet.ru 2012-08-01 08:00:26.260159

В этом примере из трех таблиц (hosts, visits, sites) выбирается по одному полю и создается новая таблица, в которой будут собраны имена узлов, посещаемых сайтов и время посещений. Представление соединяемых данных регламентируется условиями в операторе WHERE. Видно, что имеется два условия, которые соединяют три таблицы. Поскольку в таблице посещений (visits) вместо имени узла и наименования сайта указаны их идентификаторы, при соединении таблиц мы добавляем условие, чтобы связать по идентификаторам данные и тогда все встанет на свои места. Если по каким-то причинам, вопреки ссылочной целостности в таблице посещений будут находиться записи с идентификатором несуществующего узла или сайта, они не появятся в результирующем наборе данных запроса в этом примере.

Указанный выше пример немного упрощен и из-за немного упрощения теряется наглядность. Более наглядная форма запроса, соединяющего несколько таблиц и возвращающего тот же самый набор данных будет иметь вид

SELECT hst_name, sit_name, vis_timestamp FROM hosts JOIN visits ON (hst_pcode = vis_hstcode) JOIN sites ON (vis_sitcode = sit_pcode);

В запросе присутствует два оператора JOIN… ON. Поскольку «Join» можно перевести как «соединение» или «объединение», этот пример более красноречив. Если попытаться перевести текст SQL-запроса на русский, получится что-то вроде

ВЫБРАТЬ (поля) hst_name, sit_name, vis_timestamp ИЗ (таблицы) hosts СОЕДИНИВ (с таблицей) visits ПО (условию) (hst_pcode = vis_hstcode) СОЕДИНИВ (с таблицей) sites ПО (условию) (vis_sitcode = sit_pcode);

Русские слова в круглых скобках добавлены для облегчения понимания работы запроса. Вы можете использовать любой из вышеперечисленных способов написания запросов.

Внешнее соединение

Использованные выше способы соединения таблиц называются внутреннее соединение (inner join). У такого способа соединения есть недостатки. Например, если у нас не было посещений на один из сайтов, либо один из узлов не совершил ни одного посещения, то в результирующем наборе данных сайт или узел будут отсутствовать. В примере выше видно, что сайт www.yandex.ru отсутствует в данных, равно как и узел 1-3.Иногда это нежелательно и в таких случаях используют внешнее соединение (outer join). Внешнее соединение может быть левым (left join) и правым (right join). Сторона соединения (левая или правая) соответствует таблице, данные из которой будут выбираться полностью. Таким образом, при использовании LEFT JOIN, данные из таблицы слева от оператора JOIN будут выбираться полностью. Закрепим это примером. Допустим, надо выбрать ВСЕ узлы и связанные с ними посещения. Сделать это можно посредством запроса

SELECT hst_name, vis_timestamp FROM hosts LEFT JOIN visits ON (hst_pcode = vis_hstcode);

Обратите внимание на данные, которые вернутся в ответ на запрос

hst_name vis_timestamp
ws1 2012-08-01 07:59:58.209028
ws1 2012-08-01 08:00:10.315083
1-1 2012-08-01 08:00:20.025087
1-2 2012-08-01 08:00:26.260159
1-3

Видно, что узлу 1-3 не соответствует ни одно посещение, но он все равно в списке. Аналогичным образом работает RIGHT JOIN. Запрос, который вернет тот же набор данных можно записать с использованием RIGHT JOIN:

SELECT hst_name, vis_timestamp FROM visits RIGHT JOIN hosts ON (hst_pcode = vis_hstcode);

В этом случае, надо сменить LEFT JOIN на RIGHT JOIN и поменять местами таблицы visits и hosts в запросе.

Использование UNION

Иногда бывает нужно получить два списка записей из таблиц в виде одного. Для этой цели может быть использовано ключевое слово UNION, которое позволяет объединить результирующие наборы данных двух запросов в один набор данных. Допустим, надо получить некоторый список, в котором были бы узлы сети и имена сайтов. Таблицы разные, соответственно и запросы будут разными. Как объединить все в один набор данных? Легко, но есть определенные требования к такому «склеиванию» запросов:

§ запросы должны содержать одинаковое число полей;

§ типы данных полей объединяемых запросов так же должны совпадать.

В остальном же, использование UNION не является сложным. Например, чтобы получить список имен узлов и имен сайтов в виде одного набора данных, выполним такой запрос:

SELECT hst_name AS name FROM hosts UNIONSELECT sit_name AS name FROM sites;

При таком подходе возможны проблемы с сортировкой записей. Чтобы список сайтов шел после списка узлов, можно умышленно добавить целочисленное поле, где указывать номер, который будет участвовать в сортировке. Например

SELECT 1 AS level, hst_name AS name FROM hosts UNIONSELECT 2 AS level, sit_name AS name FROM sitesORDER BY level, name;

Условия EXISTS и NOT EXISTS

Иногда бывает необходимо выбрать из таблицы записи, которым соответствуют (или не соответствуют) записи в других таблицах. Допустим, что нам нужен список сайтов, на которые не было посещений. Получить такой список можно запросом

SELECT sit_name FROM sites WHERE ((SELECT COUNT(*) FROM visits WHERE vis_sitcode = sit_pcode) = 0);

Для нашего примера, список будет коротким:

sit_name
www.yandex.ru

Запрос работает следующим образом:

§ из таблицы sites выбирается код сайта и его наименование;

§ код сайта передается во вложенный запрос, который считает записи с этим кодом в таблице visits;

§ функция COUNT(*) сосчитает записи и вернет их количество, который будет передано в условие;

§ при истинности условия (количество записей равно 0) имя сайта добавляется в список.

Если некоторым этот запрос покажется непонятным, то можно добиться тех же результатов посредством запроса с использованием NOT EXISTS:

SELECT sit_name FROM sites WHERE NOT EXISTS (SELECT vis_pcode FROM visits WHERE vis_sitcode = sit_pcode);

Выражение NOT EXISTS (на мой взгляд) вносит дополнительную ясность и более доступно для понимания. Аналогично работает выражение EXISTS, которое проверяет наличие записей.

Представления (VIEW)

Представления (VIEW) используются для обеспечения возможности сохранения сложного запроса на сервере под указанным именем. Допустим, вам часто приходится запрашивать данные, набирая объемный запрос. Если подойти к проблеме прогрессивно, то можно создать представление. Делается это несложно. Например,

CREATE VIEW show_dom2 ASSELECT hst_name FROM hosts WHERE hst_pcode IN (SELECT vis_hstcode FROM visits, sites WHERE (sit_pcode = vis_sitcode) AND (sit_name LIKE "www.dom2.ru"));

Собственно, всё. Внимательный наблюдатель, наверное, заметил, что по-сути, можно взять запрос и в самом начале добавить слова «CREATE VIEW <имя> AS». Именно по такому принципу можно рекомендовать создание представлений. Создайте запрос, убедитесь в его работоспособности и потом допишите все необходимое, чтобы сохранить этот запрос на сервере как представление. Единственный недостаток использования представлений заключается в том, что некоторые особо сложные приемы написания запросов могут не работать в представлениях. К сожалению, в документации по postgreSQL очень мало сведений о представлениях и однозначно узнать, что можно использовать, а что нет вы сможете методом проб и ошибок. Сохранив запрос на сервере как представление, вы сможете выполнить его сколько угодно раз, запросом типа

SELECT * FROM show_dom2;

Важно отметить, что при выполнении запроса, который выбирает данные из представления - данные выбираются из таблиц посредством запроса, который хранится в представлении. Представление является полностью динамическим и данные, возвращаемые представлением будут актуальными при обновлении данных в таблицах. Удалить представление можно запросом типа

DROP VIEW show_dom2;

Заключение

данные отчет запрос заказ

В данной курсовой работе была разработана база данных "Склад канцтоваров", содержащая всю необходимую информацию о товарах, покупателях, поставщиках и заказах. С помощью моей базы можно без затруднений и специальных знаний вести базу данных, которая позволяет делать все операции с клиентами, заказами, производителями. То есть добавлять, изменять, обновлять, удалять и просматривать все имеющиеся и вводимые данные. На основе базы данных были составлены запросы и отчеты.

ЗАКЛЮЧЕНИЕ


СПИСОК ЛИТЕРАТУРЫ


ПРИЛОЖЕНИЕ А


ПРИЛОЖЕНИЕ Б


  • Перевод
  • Tutorial
Надо “ SELECT * WHERE a=b FROM c ” или “ SELECT WHERE a=b FROM c ON * ” ?

Если вы похожи на меня, то согласитесь: SQL - это одна из тех штук, которые на первый взгляд кажутся легкими (читается как будто по-английски!), но почему-то приходится гуглить каждый простой запрос, чтобы найти правильный синтаксис.


А потом начинаются джойны, агрегирование, подзапросы, и получается совсем белиберда. Вроде такой:


SELECT members.firstname || " " || members.lastname AS "Full Name" FROM borrowings INNER JOIN members ON members.memberid=borrowings.memberid INNER JOIN books ON books.bookid=borrowings.bookid WHERE borrowings.bookid IN (SELECT bookid FROM books WHERE stock>(SELECT avg(stock) FROM books)) GROUP BY members.firstname, members.lastname;

Буэ! Такое спугнет любого новичка, или даже разработчика среднего уровня, если он видит SQL впервые. Но не все так плохо.


Легко запомнить то, что интуитивно понятно, и с помощью этого руководства я надеюсь снизить порог входа в SQL для новичков, а уже опытным предложить по-новому взглянуть на SQL.


Не смотря на то, что синтаксис SQL почти не отличается в разных базах данных, в этой статье для запросов используется PostgreSQL. Некоторые примеры будут работать в MySQL и других базах.

1. Три волшебных слова

В SQL много ключевых слов, но SELECT , FROM и WHERE присутствуют практически в каждом запросе. Чуть позже вы поймете, что эти три слова представляют собой самые фундаментальные аспекты построения запросов к базе, а другие, более сложные запросы, являются всего лишь надстройками над ними.

2. Наша база

Давайте взглянем на базу данных, которую мы будем использовать в качестве примера в этой статье:







У нас есть книжная библиотека и люди. Также есть специальная таблица для учета выданных книг.

  • В таблице "books" хранится информация о заголовке, авторе, дате публикации и наличии книги. Все просто.
  • В таблице “members” - имена и фамилии всех записавшихся в библиотеку людей.
  • В таблице “borrowings” хранится информация о взятых из библиотеки книгах. Колонка bookid относится к идентификатору взятой книги в таблице “books”, а колонка memberid относится к соответствующему человеку из таблицы “members”. У нас также есть дата выдачи и дата, когда книгу нужно вернуть.

3. Простой запрос

Давайте начнем с простого запроса: нам нужны имена и идентификаторы (id) всех книг, написанных автором “Dan Brown”


Запрос будет таким:


SELECT bookid AS "id", title FROM books WHERE author="Dan Brown";

А результат таким:


id title
2 The Lost Symbol
4 Inferno

Довольно просто. Давайте разберем запрос чтобы понять, что происходит.

3.1 FROM - откуда берем данные

Сейчас это может показаться очевидным, но FROM будет очень важен позже, когда мы перейдем к соединениям и подзапросам.


FROM указывает на таблицу, по которой нужно делать запрос. Это может быть уже существующая таблица (как в примере выше), или таблица, создаваемая на лету через соединения или подзапросы.

3.2 WHERE - какие данные показываем

WHERE просто-напросто ведет себя как фильтр строк , которые мы хотим вывести. В нашем случае мы хотим видеть только те строки, где значение в колонке author - это “Dan Brown”.

3.3 SELECT - как показываем данные

Теперь, когда у нас есть все нужные нам колонки из нужной нам таблицы, нужно решить, как именно показывать эти данные. В нашем случае нужны только названия и идентификаторы книг, так что именно это мы и выберем с помощью SELECT . Заодно можно переименовать колонку используя AS .


Весь запрос можно визуализировать с помощью простой диаграммы:


4. Соединения (джойны)

Теперь мы хотим увидеть названия (не обязательно уникальные) всех книг Дэна Брауна, которые были взяты из библиотеки, и когда эти книги нужно вернуть:


SELECT books.title AS "Title", borrowings.returndate AS "Return Date" FROM borrowings JOIN books ON borrowings.bookid=books.bookid WHERE books.author="Dan Brown";

Результат:


Title Return Date
The Lost Symbol 2016-03-23 00:00:00
Inferno 2016-04-13 00:00:00
The Lost Symbol 2016-04-19 00:00:00

По большей части запрос похож на предыдущий за исключением секции FROM . Это означает, что мы запрашиваем данные из другой таблицы . Мы не обращаемся ни к таблице “books”, ни к таблице “borrowings”. Вместо этого мы обращаемся к новой таблице , которая создалась соединением этих двух таблиц.


borrowings JOIN books ON borrowings.bookid=books.bookid - это, считай, новая таблица, которая была сформирована комбинированием всех записей из таблиц "books" и "borrowings", в которых значения bookid совпадают. Результатом такого слияния будет:



А потом мы делаем запрос к этой таблице так же, как в примере выше. Это значит, что при соединении таблиц нужно заботиться только о том, как провести это соединение. А потом запрос становится таким же понятным, как в случае с «простым запросом» из пункта 3.


Давайте попробуем чуть более сложное соединение с двумя таблицами.


Теперь мы хотим получить имена и фамилии людей, которые взяли из библиотеки книги автора “Dan Brown”.


На этот раз давайте пойдем снизу вверх:


Шаг Step 1 - откуда берем данные? Чтобы получить нужный нам результат, нужно соединить таблицы “member” и “books” с таблицей “borrowings”. Секция JOIN будет выглядеть так:


borrowings JOIN books ON borrowings.bookid=books.bookid JOIN members ON members.memberid=borrowings.memberid

Результат соединения можно увидеть по ссылке .


Шаг 2 - какие данные показываем? Нас интересуют только те данные, где автор книги - “Dan Brown”


WHERE books.author="Dan Brown"

Шаг 3 - как показываем данные? Теперь, когда данные получены, нужно просто вывести имя и фамилию тех, кто взял книги:


SELECT members.firstname AS "First Name", members.lastname AS "Last Name"

Супер! Осталось лишь объединить три составные части и сделать нужный нам запрос:


SELECT members.firstname AS "First Name", members.lastname AS "Last Name" FROM borrowings JOIN books ON borrowings.bookid=books.bookid JOIN members ON members.memberid=borrowings.memberid WHERE books.author="Dan Brown";

Что даст нам:


First Name Last Name
Mike Willis
Ellen Horton
Ellen Horton

Отлично! Но имена повторяются (они не уникальны). Мы скоро это исправим.

5. Агрегирование

Грубо говоря, агрегирования нужны для конвертации нескольких строк в одну . При этом, во время агрегирования для разных колонок используется разная логика.


Давайте продолжим наш пример, в котором появляются повторяющиеся имена. Видно, что Ellen Horton взяла больше одной книги, но это не самый лучший способ показать эту информацию. Можно сделать другой запрос:


SELECT members.firstname AS "First Name", members.lastname AS "Last Name", count(*) AS "Number of books borrowed" FROM borrowings JOIN books ON borrowings.bookid=books.bookid JOIN members ON members.memberid=borrowings.memberid WHERE books.author="Dan Brown" GROUP BY members.firstname, members.lastname;

Что даст нам нужный результат:


First Name Last Name Number of books borrowed
Mike Willis 1
Ellen Horton 2

Почти все агрегации идут вместе с выражением GROUP BY . Эта штука превращает таблицу, которую можно было бы получить запросом, в группы таблиц. Каждая группа соответствует уникальному значению (или группе значений) колонки, которую мы указали в GROUP BY . В нашем примере мы конвертируем результат из прошлого упражнения в группу строк. Мы также проводим агрегирование с count , которая конвертирует несколько строк в целое значение (в нашем случае это количество строк). Потом это значение приписывается каждой группе.


Каждая строка в результате представляет собой результат агрегирования каждой группы.



Можно прийти к логическому выводу, что все поля в результате должны быть или указаны в GROUP BY , или по ним должно производиться агрегирование. Потому что все другие поля могут отличаться друг от друга в разных строках, и если выбирать их SELECT "ом, то непонятно, какие из возможных значений нужно брать.


В примере выше функция count обрабатывала все строки (так как мы считали количество строк). Другие функции вроде sum или max обрабатывают только указанные строки. Например, если мы хотим узнать количество книг, написанных каждым автором, то нужен такой запрос:


SELECT author, sum(stock) FROM books GROUP BY author;

Результат:


author sum
Robin Sharma 4
Dan Brown 6
John Green 3
Amish Tripathi 2

Здесь функция sum обрабатывает только колонку stock и считает сумму всех значений в каждой группе.

6. Подзапросы


Подзапросы это обычные SQL-запросы, встроенные в более крупные запросы. Они делятся на три вида по типу возвращаемого результата.

6.1 Двумерная таблица

Есть запросы, которые возвращают несколько колонок. Хороший пример это запрос из прошлого упражнения по агрегированию. Будучи подзапросом, он просто вернет еще одну таблицу, по которой можно делать новые запросы. Продолжая предыдущее упражнение, если мы хотим узнать количество книг, написанных автором “Robin Sharma”, то один из возможных способов - использовать подзапросы:


SELECT * FROM (SELECT author, sum(stock) FROM books GROUP BY author) AS results WHERE author="Robin Sharma";

Результат:



Можно записать как: ["Robin Sharma", "Dan Brown"]


2. Теперь используем этот результат в новом запросе:


SELECT title, bookid FROM books WHERE author IN (SELECT author FROM (SELECT author, sum(stock) FROM books GROUP BY author) AS results WHERE sum > 3);

Результат:


title bookid
The Lost Symbol 2
Who Will Cry When You Die? 3
Inferno 4

Это то же самое, что:


SELECT title, bookid FROM books WHERE author IN ("Robin Sharma", "Dan Brown");

6.3 Отдельные значения

Бывают запросы, результатом которых являются всего одна строка и одна колонка. К ним можно относиться как к константным значениям, и их можно использовать везде, где используются значения, например, в операторах сравнения. Их также можно использовать в качестве двумерных таблиц или массивов, состоящих из одного элемента.


Давайте, к примеру, получим информацию о всех книгах, количество которых в библиотеке превышает среднее значение в данный момент.


Среднее количество можно получить таким образом:


select avg(stock) from books;

Что дает нам:


7. Операции записи

Большинство операций записи в базе данных довольно просты, если сравнивать с более сложными операциями чтения.

7.1 Update

Синтаксис запроса UPDATE семантически совпадает с запросом на чтение. Единственное отличие в том, что вместо выбора колонок SELECT "ом, мы задаем знаения SET "ом.


Если все книги Дэна Брауна потерялись, то нужно обнулить значение количества. Запрос для этого будет таким:


UPDATE books SET stock=0 WHERE author="Dan Brown";

WHERE делает то же самое, что раньше: выбирает строки. Вместо SELECT , который использовался при чтении, мы теперь используем SET . Однако, теперь нужно указать не только имя колонки, но и новое значение для этой колонки в выбранных строках.


7.2 Delete

Запрос DELETE это просто запрос SELECT или UPDATE без названий колонок. Серьезно. Как и в случае с SELECT и UPDATE , блок WHERE остается таким же: он выбирает строки, которые нужно удалить. Операция удаления уничтожает всю строку, так что не имеет смысла указывать отдельные колонки. Так что, если мы решим не обнулять количество книг Дэна Брауна, а вообще удалить все записи, то можно сделать такой запрос:


DELETE FROM books WHERE author="Dan Brown";

7.3 Insert

Пожалуй, единственное, что отличается от других типов запросов, это INSERT . Формат такой:


INSERT INTO x (a,b,c) VALUES (x, y, z);

Где a , b , c это названия колонок, а x , y и z это значения, которые нужно вставить в эти колонки, в том же порядке. Вот, в принципе, и все.


Взглянем на конкретный пример. Вот запрос с INSERT , который заполняет всю таблицу "books":


INSERT INTO books (bookid,title,author,published,stock) VALUES (1,"Scion of Ikshvaku","Amish Tripathi","06-22-2015",2), (2,"The Lost Symbol","Dan Brown","07-22-2010",3), (3,"Who Will Cry When You Die?","Robin Sharma","06-15-2006",4), (4,"Inferno","Dan Brown","05-05-2014",3), (5,"The Fault in our Stars","John Green","01-03-2015",3);

8. Проверка

Мы подошли к концу, предлагаю небольшой тест. Посмотрите на тот запрос в самом начале статьи. Можете разобраться в нем? Попробуйте разбить его на секции SELECT , FROM , WHERE , GROUP BY , и рассмотреть отдельные компоненты подзапросов.


Вот он в более удобном для чтения виде:


SELECT members.firstname || " " || members.lastname AS "Full Name" FROM borrowings INNER JOIN members ON members.memberid=borrowings.memberid INNER JOIN books ON books.bookid=borrowings.bookid WHERE borrowings.bookid IN (SELECT bookid FROM books WHERE stock> (SELECT avg(stock) FROM books)) GROUP BY members.firstname, members.lastname;

Этот запрос выводит список людей, которые взяли из библиотеки книгу, у которой общее количество выше среднего значения.


Результат:


Full Name
Lida Tyler

Надеюсь, вам удалось разобраться без проблем. Но если нет, то буду рад вашим комментариям и отзывам, чтобы я мог улучшить этот пост.

Теги: Добавить метки

Вложенные запросы – это запросы, вызываемые другим, внешним, запросом. Они всегда заключаются в круглые скобки и им обязательно должен присваиваться псевдоним. Некоторые считают вложенный запрос аналогом временных таблиц, однако эти два инструмента имеют ряд отличий, которые мы рассмотрим в данной статье.

Вложенный запрос видит только себя, он не видит внешний запрос. Это значит, что нельзя, например, установить во вложенном запросе условие по значению поля внешнего запроса.

Большинство представленных запросов не имеют какой-либо ценности и могли бы быть выполнены проще. Они приведены только для иллюстрации механизма вложенных запросов.

Вложенные запросы могут использоваться в конструкции ИЗ:

Запрос. Текст= "ВЫБРАТЬ
ВложенныйЗапрос.Поле1,
ВложенныйЗапрос.Поле2
ИЗ
(ВЫБРАТЬ
Таблица1.Поле1,
Таблица1.Поле2
ИЗ ТаблицаДанных КАК Таблица1) КАК ВложенныйЗапрос"
;

В том числе в соединениях:

Запрос. Текст= "ВЫБРАТЬ
ВложенныйЗапрос.Наименование,

ИЗ
(ВЫБРАТЬ
Контрагенты.Ссылка КАК Ссылка,
Контрагенты.Наименование КАК Наименование
ИЗ
Справочник.Контрагенты КАК Контрагенты) КАК ВложенныйЗапрос
ЛЕВОЕ СОЕДИНЕНИЕ РегистрСведений.ЧерныйСписок.СрезПоследних КАК ЧерныйСписокСрезПоследних
ПО ВложенныйЗапрос.Ссылка = ЧерныйСписокСрезПоследних.Котрагент"
;

И в условиях запроса со сравнением В или В ИЕРАРХИИ:

Запрос. Текст= "ВЫБРАТЬ
ЧерныйСписокСрезПоследних.Состояние
ИЗ
РегистрСведений.ЧерныйСписок.СрезПоследних КАК ЧерныйСписокСрезПоследних
ГДЕ
ЧерныйСписокСрезПоследних.Котрагент В
(ВЫБРАТЬ ПЕРВЫЕ 10
Контрагенты.Ссылка
ИЗ
Справочник.Контрагенты КАК Контрагенты)"
;

При этом количество выбираемых полей вложенного запроса должно соответствовать количеству операндов в левой части выражения В или В ИЕРАРХИИ.

Существует мнение, что вложенные запросы в сложных конструкциях выполняются платформой 1С нерационально, требуют бОльших ресурсов и времени, нежели те же самые запросы, выполненные иначе, без использования вложенных запросов. Однако в ряде случаев, обойтись без вложенных запросов невозможно.

Вместе с тем, обычно эффективнее работает один большой запрос с вложенными, чем последовательность запросов из модуля.

Практически всегда альтернативой вложенному запросу является использование временных таблиц. Этот инструмент имеет ряд преимуществ:

  1. Запрос становится более структурированным, его легче читать.
  2. Результат, загруженный во временную таблицу можно использовать несколько раз, и при этом нет необходимости заново выполнять запрос, чтобы этот результат получить. А вложенный запрос будет каждый раз выполняться заново, излишне загружая ресурсы системы.

Подведем итог: вложенные запросы лучше всего применять в достаточно простых конструкциях, при этом использовать их стоит только тогда, когда по-другому задачу не решить; в сложных запросах лучше использовать временные таблицы.

  • 4.Основные понятия в концептуальном проектировании реляционных баз данных (сущность, атрибуты, отношения). Элементы реляционной модели.
  • Зависимости между атрибутами
  • 5.Целостность данных и ее виды. Нарушения целостности (аномалии).
  • 6.Функциональные связи атрибутов и нормализация таблиц. Основные нормальные формы (нф). Примеры нф.
  • 7.Использование er–моделирования в концептуальном проектировании бд. Диаграммы er- экземпляров и er-типов.
  • 8.Преобразование концептуальной модели в реляционную. Основные этапы и правила формирования отношений (пример).
  • 9.Структура и основные технические характеристики субд access 200*.Возможности проектирования персональных и сетевых приложений.
  • 10.Конструирование таблиц в ms access хр.Свойства полей. Определение типа данных, ключей, индексов.
  • 11.Связывание таблиц в субд access. Логическая схема и обеспечение ссылочной целостности данных.
  • 12.Средства реализации запросов в субд access. Виды запросов.
  • 5.2.3 Запрос к связанным таблицам
  • 5.2.4 Запросы удаления
  • 13.Реализация запросов с групповыми операциями и вычисляемыми полями. Примеры.
  • 14.Реализация запросов на модификацию и на создание таблицы.
  • 15.Стандарты современных реализаций языка sql. Основные разделы и их наполнение в sql-Jet.
  • 16.Общий формат select-инструкции (запроса на выборку). Пример реализации.
  • 17.Пример qbe- и sql–реализации перекрестного запроса.
  • 18.Создание интерфейса приложения в субд access. Работа в конструкторе форм. Разделы, элементы управления, свойства.
  • 19.Создание вложенных sql-запросов. Пример реализации.
  • 20.Программы сервиса субд access.
  • 21.Защита и администрирование бд средствами субд access.
  • 22.Использование макросов, отчетов и страниц доступа к данным в приложениях ms access хр.
  • 23.Система программирования Matlab: общая характеристика. Пакеты расширения и специализированные приложения: назначения и возможности. Подсистема Simulink.
  • 24.Структуры данных и основные структуры управления в системе программирования matlab
  • 25.Графические средства системы matlab. Работа с инструментом lti-Viewer графического анализа линейных систем управления.
  • 26.Этапы построения модели в подсистеме Simulink. Элементы технологии визуально-блочного моделирования. Настройка параметров моделирования и параметров блоков.
  • 27.Общее описание блоков библиотеки simulink.
  • 28.Реализация принципа иерархии в Simulink – моделях посредством блоков портов и подсистем. Маскирование подсистем.
  • 29.Компоненты виртуального прибора и их сборка в приложение в среде LabView. Основные элементы управления и индикаторы LabView и их соединение на блок-диаграмме.
  • 19.Создание вложенных sql-запросов. Пример реализации.

    С помощью SQL можно вкладывать запросы внутрь друг друга. Обычно внутренний запрос генерирует значение, которое проверяется в предикате внешнего запроса (в предложении WHERE или HAVING), определяющего, верно оно или нет. Совместно с подзапросом можно использовать предикат EXISTS, который возвращает истину, если вывод подзапроса не пуст.

    В сочетании с другими возможностями оператора выбора, такими как группировка, подзапрос представляет собой мощное средство для достижения нужного результата. В части FROM оператора SELECT допустимо применять синонимы к именам таблицы, если при формировании запроса нам требуется более чем один экземпляр некоторого отношения. Синонимы задаются с использованием ключевого слова AS, которое может быть вообще опущено. Поэтому часть FROM может выглядеть следующим образом:

    FROM Rl AS A, Rl AS В

    FROM Rl A. Rl В:

    оба выражения эквивалентны и рассматриваются как применения оператора SELECT к двум экземплярам таблицы R1.

    Например, покажем, как выглядят на SQL некоторые запросы к БД «Сессия»:

     Список тех, кто сдал все положенные экзамены.

    WHERE Оценка > 2

    HAVING COUNT(*) = (SELECT COUNT(*)

    WHERE R2.Группа=R3.Группа AND ФИОа.ФИО)

    Здесь во встроенном запросе определяется общее число экзаменов, которые должен сдавать каждый студент, обучающийся в группе, в которой учится данный студент, и это число сравнивается с числом экзаменов, которые сдал данный студент.

     Список тех, кто должен был сдавать экзамен по БД, но пока еще не сдавал.

    SЕLЕСТ ФИО

    WHERE R2.Fpynna=R3.Группа AND Дисциплина = "БД" AND NOT EXISTS

    (SELECT ФИО FROM Rl WHERE ФИО=а.ФИО AND Дисциплина = "БД")

    Предикат EXISTS (SubQuery) истинен, когда подзапрос SubQuery не пуст, то есть содержит хотя бы один кортеж, в противном случае предикат EXISTS ложен.

    Предикат NOT EXISTS обратно - истинен только тогда, когда подзапрос SubQuery пуст.

    Обратите внимание, каким образом NOT EXISTS с вложенным запросом позволяет обойтись без операции разности отношений. Например, формулировка запроса со словом «все» может быть выполнена как бы с двойным отрицанием. Рассмотрим пример базы, которая моделирует поставку отдельных деталей отдельными поставщиками, она представлена одним отношением SP «Поставщики-детали» со схемой

    SP (Номер_поставщика. номер_детали) Р (номер_детали. наименование)

    Вот каким образом формулируется ответ на запрос: «Найти поставщиков, которые поставляют все детали».

    SELECT DISTINCT НОМЕР_ПОСТАВЩИКА FROM SP SP1 WHERE NOT EXISTS

    (SELECT номер_детали

    FROM P WHERE NOT EXISTS

    (SELECT * FROM SP SP2

    WHERE SР2.номер_поставщика=SР1.номер_поставщика AND

    sр2.номер_детали = Р.номер_детали)):

    Фактически мы переформулировали этот запрос так: «Найти поставщиков таких, что не существует детали, которую бы они не поставляли». Следует отметить, что этот запрос может быть реализован и через агрегатные функции с подзапросом:

    SELECT DISTINCT Номер_поставщика

    GROUP BY Номер_поставщика

    HAVING CounKDISTINCT номер_детали) =

    (SELECT Count(номер_детали)

    В стандарте SQL92 операторы сравнения расширены до многократных сравнений с использованием ключевых слов ANY и ALL. Это расширение используется при сравнении значения определенного столбца со столбцом данных, возвращаемым вложенным запросом.

    Ключевое слово ANY, поставленное в любом предикате сравнения, означает, что предикат будет истинен, если хотя бы для одного значения из подзапроса предикат сравнения истинен. Ключевое слово ALL требует, чтобы предикат сравнения был бы истинен при сравнении со всеми строками подзапроса.

    Например, найдем студентов, которые сдали все экзамены на оценку не ниже чем «хорошо». Работаем с той же базой «Сессия», но добавим к ней еще одно отношение R4, которое характеризует сдачу лабораторных работ в течение семестра:

    R 1 = (ФИО, Дисциплина, Оценка);

    R 2 = (ФИО, Группа);

    R 3 = (Группы, Дисциплина)

    R 4 = (ФИО, Дисциплина, Номер_лаб_раб, Оценка);

    Select R1.ФИО From R1 Where 4 > = All (Select Rl.Оценка

    Where R1.Фио = R11.Фио)

    Рассмотрим еще один пример:

    Выбрать студентов, у которых оценка по экзамену не меньше, чем хотя бы одна оценка по сданным им лабораторным работам по данной дисциплины:

    Select R1.Фио

    From R1 Where R1.Оценка >= ANY (Select R4.Оценка

    Where Rl.Дисциплина = R4. Дисциплина AND R1.Фио = R4.Фио)



    © 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows