Oracle анонимный блок

Oracle анонимный блок

30.03.2019

Структуры

Как вам должно быть уже известно, классы относятся к ссылочным типам данных. Это означает, что объекты конкретного класса доступны по ссылке, в отличие от значений простых типов, доступных непосредственно. Но иногда прямой доступ к объектам как к значениям простых типов оказывается полезно иметь, например, ради повышения эффективности программы. Ведь каждый доступ к объектам (даже самым мелким) по ссылке связан с дополнительными издержками на расход вычислительных ресурсов и оперативной памяти.

Для разрешения подобных затруднений в C# предусмотрена структура , которая подобна классу, но относится к типу значения, а не к ссылочному типу данных. Т.е. структуры отличаются от классов тем, как они сохраняются в памяти и как к ним осуществляется доступ (классы - это ссылочные типы, размещаемые в куче, структуры - типы значений, размещаемые в стеке), а также некоторыми свойствами (например, структуры не поддерживают наследование). Из соображений производительности вы будете использовать структуры для небольших типов данных. Однако в отношении синтаксиса структуры очень похожи на классы.

Главное отличие состоит в том, что при их объявлении используется ключевое слово struct вместо class. Ниже приведена общая форма объявления структуры:

struct имя: интерфейсы { // объявления членов }

где имя обозначает конкретное имя структуры.

Как и у классов, у каждой структуры имеются свои члены: методы, поля, индексаторы, свойства, операторные методы и события. В структурах допускается также определять конструкторы, но не деструкторы. В то же время для структуры нельзя определить конструктор, используемый по умолчанию (т.е. конструктор без параметров). Дело в том, что конструктор, вызываемый по умолчанию, определяется для всех структур автоматически и не подлежит изменению. Такой конструктор инициализирует поля структуры значениями, задаваемыми по умолчанию. А поскольку структуры не поддерживают наследование, то их члены нельзя указывать как abstract, virtual или protected.

Объект структуры может быть создан с помощью оператора new таким же образом, как и объект класса, но в этом нет особой необходимости. Ведь когда используется оператор new, то вызывается конструктор, используемый по умолчанию. А когда этот оператор не используется, объект по-прежнему создается, хотя и не инициализируется. В этом случае инициализацию любых членов структуры придется выполнить вручную.

Давайте рассмотрим пример использования структур:

Using System; namespace ConsoleApplication1 { // Создадим структуру struct UserInfo { public string Name; public byte Age; public UserInfo(string Name, byte Age) { this.Name = Name; this.Age = Age; } public void WriteUserInfo() { Console.WriteLine("Имя: {0}, возраст: {1}",Name,Age); } } class Program { static void Main() { UserInfo user1 = new UserInfo("Alexandr", 26); Console.Write("user1: "); user1.WriteUserInfo(); UserInfo user2 = new UserInfo("Elena",22); Console.Write("user2: "); user2.WriteUserInfo(); // Показать главное отличие структур от классов user1 = user2; user2.Name = "Natalya"; user2.Age = 25; Console.Write("\nuser1: "); user1.WriteUserInfo(); Console.Write("user2: "); user2.WriteUserInfo(); Console.ReadLine(); } } }

Обратите внимание, когда одна структура присваивается другой, создается копия ее объекта. В этом заключается одно из главных отличий структуры от класса. Когда ссылка на один класс присваивается ссылке на другой класс, в итоге ссылка в левой части оператора присваивания указывает на тот же самый объект, что и ссылка в правой его части. А когда переменная одной структуры присваивается переменной другой структуры, создается копия объекта структуры из правой части оператора присваивания.

Поэтому, если бы в предыдущем примере использовался класс UserInfo вместо структуры, получился бы следующий результат:

Назначение структур

В связи с изложенным выше возникает резонный вопрос: зачем в C# включена структура, если она обладает более скромными возможностями, чем класс? Ответ на этот вопрос заключается в повышении эффективности и производительности программ. Структуры относятся к типам значений, и поэтому ими можно оперировать непосредственно, а не по ссылке. Следовательно, для работы со структурой вообще не требуется переменная ссылочного типа, а это означает в ряде случаев существенную экономию оперативной памяти.

Последнее обновление: 02.10.2018

Наряду с классами структуры представляют еще один способ создания обственных типов данных в C#. Более того многие примитивные типы, например, int, double и т.д., по сути являются структурами.

Например, определим структуру, которая представляет человека:

Struct User { public string name; public int age; public void DisplayInfo() { Console.WriteLine($"Name: {name} Age: {age}"); } }

Как и классы, структуры могут хранить состояние в виде переменных и определять поведение в виде методов. Так, в данном случае определены две переменные - name и age для хранения соответственно имени и возраста человека и метод DisplayInfo для вывода информации о человеке.

Используем эту структуру в программе:

Using System; namespace HelloApp { struct User { public string name; public int age; public void DisplayInfo() { Console.WriteLine($"Name: {name} Age: {age}"); } } class Program { static void Main(string args) { User tom; tom.name = "Tom"; tom.age = 34; tom.DisplayInfo(); Console.ReadKey(); } } }

В данном случае создается объект tom. У него устанавливаются значения глобальных переменных, и затем выводится информация о нем.

Конструкторы структуры

Как и класс, структура может определять констукторы. Но в отличие от класса нам не обязательно вызывать конструктор для создания объекта структуры:

User tom;

Однако если мы таким образом создаем объект структуры, то обязательно надо проинициализировать все поля (глобальные переменные) структуры перед получением их значений или перед вызовом методов структуры. То есть, например, в следующем случае мы получим ошибку, так как обращение к полям и методам происходит до присвоения им начальных значений:

User tom; int x = tom.age; // Ошибка tom.DisplayInfo(); // Ошибка

Также мы можем использовать для создания структуры конструктор по умолчанию, при вызове которого полям структуры будет присвоено значение по умолчанию (например, для числовых типов это число 0):

User tom = new User(); tom.DisplayInfo(); // Name: Age: 0

Также мы можем определить свои конструкторы. Например, изменим структуру User:

Using System; using System.Reflection; namespace HelloApp { struct User { public string name; public int age; public User(string name, int age) { this.name = name; this.age = age; } public void DisplayInfo() { Console.WriteLine($"Name: {name} Age: {age}"); } } class Program { static void Main(string args) { User tom = new User("Tom", 34); tom.DisplayInfo(); User bob = new User(); bob.DisplayInfo(); Console.ReadKey(); } } }

Важно учитывать, что если мы определяем конструктор в структуре, то он должен инициализировать все поля структуры, как в данном случае устанавливаются значения для переменных name и age.

Также, как и для класса, можно использовать инициализатор для создания структуры:

User person = new User { name = "Sam", age = 31 };

Но в отличие от класса нельзя инициализировать поля структуры напрямую при их объявлении, например, следующим образом:

Struct User { public string name = "Sam"; // ! Ошибка public int age = 23; // ! Ошибка public void DisplayInfo() { Console.WriteLine($"Name: {name} Age: {age}"); } }

Недавно познакомился со структурами C/C++ - struct. Господи, да «что же с ними знакомиться» скажете вы? Тем самым вы допустите сразу 2 ошибки: во-первых я не Господи, а во вторых я тоже думал что структуры - они и в Африке структуры. А вот как оказалось и - нет. Я расскажу о нескольких жизненно-важных подробностях, которые кого-нибудь из читателей избавят от часовой отладки…

Выравнивание полей в памяти

Обратите внимание на структуру:

Struct Foo { char ch; int value; };
Ну во-первых какой у этой структуры размер в памяти? sizeof(Foo) ?
Размер этой структуры в памяти зависит от настроек компилятора и от директив в вашем коде…

В общем выравниваются в памяти поля по границе кратной своему же размеру. То есть 1-байтовые поля не выравниваются, 2-байтовые - выравниваются на чётные позиции, 4-байтовые - на позиции кратные четырём и т.д. В большинстве случаев (или просто предположим что сегодня это так) выравнивание размера структуры в памяти составляет 4 байта. Таким образом, sizeof(Foo) == 8 . Где и как прилепятся лишние 3 байта? Если вы не знаете - ни за что не угадаете…

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: пусто
  • 4 байт: пусто
  • 5 байт: value
  • 6 байт: value
  • 7 байт: value
  • 8 байт: value
Посмотрим теперь размещение в памяти следующей структуры:

Struct Foo { char ch; short id; int value; };
Оно выглядит вот так:

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: id
  • 4 байт: id
  • 5 байт: value
  • 6 байт: value
  • 7 байт: value
  • 8 байт: value
То есть, то что можно впихнуть до выравнивания по 4 байта - впихивается на ура (без увеличения размера структуры в памяти), добавим ещё одно поле:

Struct Foo { char ch; short id; short opt; int value; };
Посмотрим на размещение полей в памяти:

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: id
  • 4 байт: id
  • 5 байт: opt
  • 6 байт: opt
  • 7 байт: пусто
  • 8 байт: пусто
  • 9 байт: value
  • 10 байт: value
  • 11 байт: value
  • 12 байт: value
Всё это ой как печально, но есть способ бороться с этим прямо из кода:

#pragma pack(push, 1) struct Foo { // ... }; #pragma pack(pop)
Мы установили размер выравнивания в 1 байт, описали структуру и вернули предыдущую настройку. Возвращать предыдущую настройку - категорически рекомендую. Иначе всё может закончиться очень плачевно. У меня один раз такое было - падало Qt. Где-то заинклюдил их.h-ник ниже своего.h-ника…

Битовые поля

В комментариях мне указали на то, что битовые поля в структурах по стандарту являются «implementation defined» - потому их использования лучше избежать, но для меня соблазн слишком велик...

Мне становится не то что неспокойно на душе, а вообще становится хреново, когда я вижу в коде заполнение битовых полей при помощи масок и сдвигов, например так:

Unsigned field = 0x00530000; // ... field &= 0xFFFF00FF; field |= (id) << 8; // ... field &= 0xFFFFFF83; field |= (proto) << 2;
Всё это пахнет такой печалью и такими ошибками и их отладкой, что у меня сразу же начинается мигрень! И тут из-за кулис выходят они - Битовые Поля. Что самое удивительное - были они ещё в языке C, но кого ни спрашиваю - все в первый раз о них слышат. Этот беспредел надо исправлять. Теперь буду давать им всем ссылку, ну или хотя бы ссылку на эту статью.

Как вам такой кусок кода:

#pragma pack(push,1) struct IpHeader { uint8_t header_length:4; uint8_t version:4; uint8_t type_of_service; uint16_t total_length; uint16_t identificator; // Flags uint8_t _reserved:1; uint8_t dont_fragment:1; uint8_t more_fragments:1; uint8_t fragment_offset_part1:5; uint8_t fragment_offset_part2; uint8_t time_to_live; uint8_t protocol; uint16_t checksum; // ... }; #pragma pack(pop)
А дальше в коде мы можем работать с полями как и всегда работаем с полями в C/C++. Всю работу по сдвигам и т.д. берет на себя компилятор. Конечно же есть некоторые ограничения… Когда вы перечисляете несколько битовых полей подряд, относящихся к одному физическому полю (я имею ввиду тип который стоит слева от имени битового поля) - указывайте имена для всех битов до конца поля, иначе доступа к этим битам у вас не будет, иными словами кодом:

#pragma pack(push,1) stuct MyBitStruct { uint16_t a:4; uint16_t b:4; uint16_t c; }; #pragma pack(pop)
Получилась структура на 4 байта! Две половины первого байта - это поля a и b . Второй байт не доступен по имени и последние 2 байта доступны по имени c . Это очень опасный момент. После того как описали структуру с битовыми полями обязательно проверьте её sizeof !

Также порядок размещения битовых болей в байте зависит от порядка байтов. При порядке LITTLE_ENDIAN битовые поля раздаются начиная со первых байтов, при BIG_ENDIAN - наоборот…

Порядок байтов

Меня также печалят в коде вызовы функций htons() , ntohs() , htonl() , nthol() в коде на C++. На C это ещё допустимо, но не на С++. С этим я никогда не смирюсь! Внимание всё нижесказанное относится к C++!

Ну тут я буду краток. Я в одной из своих предыдущих статей уже писал что нужно делать с порядками байтов. Есть возможность описать структуры, которые внешне работают как числа, а внутри сами определяют порядок хранения в байтах. Таким образом наша структура IP-заголовка будет выглядеть так:

#pragma pack(push,1) struct IpHeader { uint8_t header_length:4; uint8_t version:4; uint8_t type_of_service; u16be total_length; u16be identificator; // Flags uint8_t _reserved:1; uint8_t dont_fragment:1; uint8_t more_fragments:1; uint8_t fragment_offset_part1:5; uint8_t fragment_offset_part2; uint8_t time_to_live; uint8_t protocol; u16be checksum; // ... }; #pragma pack(pop)
Внимание собственно обращать на типы 2-байтовых полей - u16be . Теперь поля структуры не нуждаются ни в каких преобразованиях порядка байт. Остаются проблемы с fragment_offset , ну а у кого их нет - проблем-то. Тем не менее тоже можно придумать шаблон, прячущий это безобразие, один раз его оттестировать и смело использовать во всём своём коде.

«Язык С++ достаточно сложен, чтобы позволить нам писать на нём просто» Как ни странно - Я

З.Ы. Планирую в одной из следующих статей выложить идеальные, с моей точки зрения, структуры для работы с заголовками протоколов стека TCP/IP. Отговорите - пока не поздно!



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows