Клавиша включения вай фай на ноутбуке. Как подключить ноутбук (компьютер) к интернету по Wi-Fi? Проблемы с подключением к Wi-Fi. Проверка наличия Wi-Fi на ноутбуке

Клавиша включения вай фай на ноутбуке. Как подключить ноутбук (компьютер) к интернету по Wi-Fi? Проблемы с подключением к Wi-Fi. Проверка наличия Wi-Fi на ноутбуке

03.03.2020

Simple machines can be used to make work easier and faster. Compound machines are basically simple machines placed together to work together. Work is force acting on an object that moves it a distance (W=F*d). A simple machine must have some force applied to it to do work. Simple machines let us use a small force to beat bigger forces. They can also change the direction of the force. Keep in mind that a simple machine cannot create energy (F input * d input = F output * d output). If you want the force output to be big and distance output to be small, you need to have a big distance input and a small force input. If you want the force output to be small and the distance output to be large, then the force input needs to be large and the distance input to be small (Fd = Fd). There are three simple machines will be focus on for this project: lever, pulley, and wheel and axle. .
The lever is used in seesaws, shovels, hammers, and other everyday objects. A lever consists of three main parts: the fulcrum, rod, and the load the machine is acting on it. The fulcrum, or fixed point, allows the rod to move up and down freely. There are three classes of levers, but for this project a will be using the second-class lever. This lever allows us to use less force to act on the load. In other words, less force and more distance will be inputted to result in more force and less distance. This kind of lever in usually used to move heavy objects. The fulcrum is closer to the load to achieve this. This simple machine will probably be the best to lift the soda can. Most of the lever can be built out of wood. The fulcrum may be made out of metal or wood. .
The pulley is used in cranes. Pulleys usually lift the load. A pulley changes the direction in the force to do that. A pulley is used to change the direction of the force. It can also multiply forces depending on the type. In this project a type one and two pulley will be used.


Essays Related to Simple Machines

1.

Technology and machines have become more advanced we have grown accustomed to having machines such as computers and cars in our everyday lives. Our own machines will soon surpass our own intelligence. ... Machines have played a vital role in our lives. ... When they were first created a computer that had the power of one of today"s simple five dollar calculators required so much space to hold all of their necessary equipment it could take up a whole room, but the simple machine known today can be made so small it can not even be handled by a human due to its s...

  • Word Count: 1272
  • Approx Pages: 5
  • Grade Level: High School

2.

AI is the attempt to make machines, specifically computers, perform intelligently through programming. ... It could be said that the human brain is nothing more than a machine, and as we know it to be capable of thought it would be fair to surmise that therefore machines can think and it is probably this, or a similar premise that inspired AI. ... This argument is an attempt to demonstrate that although a computer program appears to be understanding a story, it is merely obeying simple instructions, and has no understanding at all. ... But what are these natural causal properties, and from ...

  • Word Count: 1323
  • Approx Pages: 5
  • Has Bibliography

3.

In The Time Machine by H.G Wells, Wells portrays the future to an exact detail. ... The Eloi are simple and beautiful creatures, but the Time Traveler thinks of them as weak and lazy. ... Through the Time Machine Wells warns that mankind will come to end if capitalism continues. ... Social Darwinism and evolution are presented throughout the Time Machine. ... Well"s uses the Time Machine to project what he believes the future will be. ...

  • Word Count: 1454
  • Approx Pages: 6
  • Grade Level: High School

4.

Rage Against The Machine At first thought a band standing on stage naked for 15 minutes without saying a word or playing a single note might seem lewd, but after finding that they were silently protesting censorship one might think differently of them. Rage Against the Machine (RATM) is probably one of the most atypical bands that one could ever find. ... Believe it or not there are bands who care less about money and more about issues and Rage Against the Machine is one of them. ... The majority of their songs were primarily written as activist poetry by Zack de la Rocha (lead singer ...

  • Word Count: 519
  • Approx Pages: 2

5.

ABSTRACT Complex system theory in animals and machines is well developed and a basic synopsis is provided. ... These ideas have been applied in the field of Engineering to develop machines for controlling states of objects or events: a simple temperature control system is used as a model. ... This process, is the modern basis of the modern theory regarding the evolution of life, which in simple terms can be described as the process of prolonging a type of structure through; duplication, reproduction or other processes. ... A basic comparison of control systems in nature and machines can b...

  • Word Count: 908
  • Approx Pages: 4
  • Has Bibliography
  • Grade Level: Undergraduate

6.

Personally thinking, technology makes people"s life simpler than making people"s lives more complicated because newly developed devices, improvement of living condition and efficient transportation. ... All of those technologies can help people get a simpler and easier lives. ... Thus, technology has more benefits can be discovered, and it make lives simpler rather than more complicated. In conclusion, although technology may be a little bit complicated, when we count it use on machines, communication, information, and transportation, it is more pure and effortless for our lives. ...

  • Word Count: 787
  • Approx Pages: 3
  • Has Bibliography
  • Grade Level: Undergraduate

7.

A simple distinction between both groups is that humans depend on organization where as animals do not. The Time Machine by H.G. ... Unlike the Eloi, the Morlocks have a curiosity for knowledge which is why they take the time machine. ... When the time machine is returned to him, he notices that it is very clean and well oiled. ... Wells illustrates this quite well in The Time Machine. ...

A simple machine is a mechanical device that consists of a minimum of moving parts but yet can create an improvement of the output over the input. The improvement could be creating a mechanical advantage or simply changing the direction of the output. Mechanical advantage is the increase of force, distance or speed from the input value.

Around the 16th century, the classic list of simple machines was determined. The list consisted of the lever, wheel and axle, pulley, inclined plane, wedge, and screw.

These simple machines can be broken into three classifications: lever simple machines, rotating simple machines, and inclined plane simple machines.

Questions you may have include:

  • What do lever simple machines do?
  • What do rotating simple machines do?
  • What do inclined plane simple machines do?

This lesson will answer those questions. Useful tool: Units Conversion

Lever simple machines

The lever simply consists of a rod or board that pivots on a fulcrum, creating a mechanical advantage or a change in direction.

The lever is a classic simple machine that achieves a mechanical advantage according to the ratio of the output or load arm of the lever divided by the input or effort arm.

The mechanical advantage of a lever can concern force, distance, or speed of the output.

The efficiency of the lever is very high, since the loss due to friction at the fulcrum is low.

Rotating simple machines

Rotating simple machines include rollers, wheel and axle, crank, and pulley.

Rollers

The wheel or roller by itself can make it easier to move objects by overcoming friction.

Wheel and axle

When an axle is added to a wheel, a torque on the axle increases the speed of the outer surface of the wheel. Likewise, turning the wheel from its outer edge increases the force applied from the axle.

Crank

A crank is like a wheel and axle. You can push on the handle of a crank, and it will create a twisting force or torque on the axle. This is a variation of the wheel and axle.

Pulley

A pulley is a wheel and axle, that uses a rope to lift objects. A major purpose of a pulley is to change the direction of the input force. You can pull down one a pulley rope, and the rope will lift the object upward.

Complex set of pulleys

A complex set up pulleys, such as a block-and-tackle configuration, can result in a mechanical advantage. The question is that if it is a complex set, is it still a simple machine? Probably not.

Inclined plane simple machines

Variations of an inclined plane include a ramp, wedge, and screw.

Ramp

The inclined plane or ramp makes raising a weight to a given height easier, according to the angle of the incline. Unfortunately, the resistive force of friction from sliding the object on the ramp can negate the mechanical advantage.

Variations of the inclined plane are the wedge and screw.

Wedge

Although a wedge is considered a simple machine, it is really a special application of an inclined plane.

Screw

The screw is really an inclined plane that is wrapped around a shaft. Turning the shaft around its central axis transforms rotational motion and torque into axial motion and force.

A screw can also act like a wedge, forcing itself into a softer material.

Summary

Simple machines usually exchange using a smaller force over a greater distance to move a heavy object over a short distance. The work required is the same, but the force required is less. The are also simple machines that help to reduce the resistance of friction or such.

Make it your mission to benefit your community

Of course, depending on the gun. Some are a lot more simple than others. All are “simply” machines, but not all are “Simple” machines.

A matchlock, from the 1600’s was simple, very simple, and a modern electric gatling gun, not so simple.

Col. Colt literally went broke because his first revolver, the Paterson Colt was not simple enough.

He built a large supply of revolving guns, on credit, then tried to sell them to the U.S. Army, who rejected the gun as being too fragile and too complex for use in the field.

The existing muzzle-loading pistols only had 3 moving parts, all simple to get to and to repair.

The Paterson had no trigger guard. Rather, the trigger was recessed in the frame, and when the hammer was cocked, the trigger was pushed out where it could be squeezed.

Also you had a revolving cylinder, and linkage with the hammer to move the cylinder and to index the next chamber with the barrel.

And there was added linkage from the hammer, to push the trigger out into firing position and retract it afterwards.

It had well over double the number of moving parts of a single-shot, requiring more parts inventory in the field, and repairs only by a skilled armorer, when something quit working, plus possibility of powder fouling or mud jamming the cylinder. A very few initial guns were bought as a trial, then the design was rejected completely.

So, he couldn’t sell his guns to the U.S. Army, and worse than THAT, they acquired a stink that kept them from selling in the civilian market.

Since they weren’t good enough for the Army, why would anyone else want one?

That was until The Republic Of Texas came along.

Until that time, Colt Patent Firearms was nearly done for… they were already entering bankruptcy proceedings. `

Texas put in a large order, pretty much emptying that warehouse full of guns that nobody wanted except Sam Colt’s creditors.

The first thing was that the immediate money from that order saved Colt from bankruptcy by the skin of his teeth.

The next, more important thing was that The Texas Army, Texas Navy, and (especially) The Texas Rangers used them, which created the civilian market that the U.S. Army had destroyed for him.

In The Battle Of The Bay Of Campeche, the Texas Navy defeated the Mexican Navy, and as a nod to The Republic Of Texas, Colt produced the model 1851 Navy with an engraved cylinder standard, depicting this naval battle.

In addition, to creating a market, the Rangers found a few design flaws, so Captain John Coffee Hays and Capt. Samuel Walker (The Walker Colt ) went to Connecticut with plans for design changes.

The result was The Colt Patterson #5 Holster model, marketed by Colt as “The Texas Paterson”.

The original concept was that the Paterson was an infantry weapon. When you fired your five shots, you could lay flat on the ground, partially disassemble it for reloading, then re-assemble and go on fighting.

The most important use of Colt Revolvers was by The Texas Rangers, who often had to fight Indians on horseback.

To reload the gun, you had to remove the barrel wedge, then remove the barrel, then stuff powder and ball into each chamber with a special supplied tool, then follow those steps in reverse.

If the cylinder, barrel, or barrel wedge fell out of your hands, the gun was useless.

Most Rangers got around that by wearing a sash around their waist and sticking loose parts in there while they just switched in a spare loaded cylinder.

That was in addition to carrying two revolvers, so they had a better chance of getting through an encounter without having to actually stuff powder and balls into the chambers to reload.

So the two most major changes the went to Sam Colt with was to increase caliber from .28 to .36 and produce a different shape on the grip.

Then two years later, Captain Hayes campaigned for the addition of a loading lever, and a capping port in the rear, so no disassembly was required to reload on the back of a galloping horse. Colt made the change to the Texas Paterson.

The Comanche sometimes wore breastplates made of 18-inch lengths of reeds packed in dried mud, and this would often stop a light little .28 caliber ball.

Captain John Coffee Hayes (Called “Devil Jack” by local Indians) first introduced The Comanche to Colt Patent Firearms at The Battle Of Enchanted Rock , in 1841.

He was a surveyor by trade, and climbed to the top of the highest feature in the area, (Enchanted Rock) to have a good look at the lay of the land.

Unfortunately, Enchanted Rock was sacred to both the Comanche and Tonkawa tribes, who believed that evil spirits lived there and are rumored to have made human sacrifices at the base of the rock to keep from getting on the bad side of the spirits. The Comanches caught him alone up there.

In a 3-hour solo battle, he killed them until they took refuge in caves at the base of the rock.

How many of them he killed, before they hid from him, depends on whom you ask, but the lowest count is 15.

Enchanted Rock was already believed by them to be home to evil spirits, and they became convinced that those spirits were on the side of Hays, or that he was actually one OF them.

He had two Texas Patersons, a rifle and a Bowie Knife with him.

Standard Indian tactic was to goad a Ranger into shooting OR shooting AT three of them in quick succession, then charging in for a kill before any reloading of his two pistols and a rifle could happen.

That’s how it worked with two single-shot pistols and a single-shot rifle.

Enchanted Rock was their first exposure to someone who could fire 11 shots without reloading.

At one point, he killed a couple of them climbing up after him with his Bowie Knife, another piece of standard equipment for Rangers.

YouTube Encyclopedic

    1 / 5

    Views:
  • ✪ Simple Machines for Kids: Science and Engineering for Children - FreeSchool

    ✪ Pulley, Wheel, Lever and More Simple Machines - Science for Kids | Educational Videos by Mocomi

    ✪ The Simple Machines Song | Scratch Garden

    ✪ Simple Machines Types & Functions Kindergarten,Preschoolers,Kids

    ✪ Science - Simple machine (Inclined plane, Wheel and axle and Pulley) - Hindi

    Transcription

    You"re watching FreeSchool! Hi everyone! Today we"re going to talk about simple machines. A simple machine is a device that makes work easier by magnifying or changing the direction of a force. That means that simple machines allow someone to do the same work with less effort! Simple machines have been known since prehistoric times and were used to help build the amazing structures left behind by ancient cultures. The Greek philosopher Archimedes identified three simple machines more than 2,000 years ago: the lever, the pulley, and the screw. He discovered that a lever would create a mechanical advantage, which means that using a lever would allow a person to move something that would normally be too heavy for them to shift. Archimedes said that with a long enough lever and a place to rest it, a person could move the world. Over the next few centuries more simple machines were recognized but it was less than 450 years ago that the last of the simple machines, the inclined plane, was identified. There are six types of simple machines: the Lever, the Wheel and Axle, the Pulley, the Inclined plane, the Wedge, and the Screw. Pulleys and Wheel and Axles are both a type of Lever. Wedges and Screws are both types of Inclined Planes. Each type of Simple Machine has a specific purpose and way they help do work. When speaking of simple machines, "work" means using energy to move an object across a distance. The further you have to move the object, the more energy it takes to move it. Let"s see how each type of simple machine helps do work. A LEVER is a tool like a bar or rod that sits and turns on a fixed support called a fulcrum. When you use a lever, you apply a small force over a long distance, and the lever converts it to a larger force over a shorter distance. Some examples of levers are seesaws, crowbars, and tweezers. A Wheel and Axle is easy to recognize. It consists of a wheel with a rod in the middle. You probably already know that it"s easier to move something heavy if you can put it in something with wheels, but you might not know why. For one thing, using wheels reduces the friction - or resistance between surfaces - between the load and the ground. Secondly, much like the lever, a smaller force applied to the rim of the wheel is converted to a larger force traveling a smaller distance at the axle. Wheel and axles are used for machines such as cars, bicycles, and scooters, but they are also used in other ways, like doorknobs and pencil sharpeners. A Pulley is a machine that uses a wheel with a rope wrapped around it. The wheel often has a groove in it, which the rope fits into. One end of the rope goes around the load, and the other end is where you apply the force. Pulleys can be used to move loads or change the direction of the force you are using, and help make work easier by allowing you to spread a weaker force out along a longer path to accomplish a job. By linking multiple pulleys together, you can do the same job with even less force, because you are applying the force along a much longer distance. Pulleys may be used to raise and lower flags, blinds, or sails, and are used to help raise and lower elevators. An Inclined Plane is a flat surface with one end higher than the other. Inclined planes allow loads to slide up to a higher level instead of being lifted, which allows the work to be accomplished with a smaller force spread over a longer distance. You may recognize an inclined plane as the simple machine used in ramps and slides. A Wedge is simply two inclined planes placed back to back. It is used to push two objects apart. A smaller force applied to the back of the wedge is converted to a greater force in a small area at the tip of the wedge. Examples of wedges are axes, knives, and chisels. A Screw is basically an inclined plane wrapped around a pole. Screws can be used to hold things together or to lift things. Just like the inclined plane, the longer the path the force takes, the less force is required to do the work. Screws with more threads take less force to do a job since the force has to travel a longer distance. Examples of screws are screws, nuts, bolts, jar lids, and lightbulbs. These six simple machines can be combined to form compound or complex machines, and are considered by some to be the foundation of all machinery. For example, a wheelbarrow is made of levers combined with a wheel and axle. A pair of scissors is another complex machine: the two blades are wedges, but they are connected by a lever that allows them to come together and cut. We use simple machines to help us do work every day. Every time you open a door or a bottle, cut up your food, or even just climb stairs, you are using simple machines. Take a look and see if you can identify the simple machines around you and figure out how they make it easier to do work.

    Contents

History

The idea of a simple machine originated with the Greek philosopher Archimedes around the 3rd century BC, who studied the Archimedean simple machines: lever, pulley, and screw . He discovered the principle of mechanical advantage in the lever. Archimedes" famous remark with regard to the lever: "Give me a place to stand on, and I will move the Earth." (Greek : δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω ) expresses his realization that there was no limit to the amount of force amplification that could be achieved by using mechanical advantage. Later Greek philosophers defined the classic five simple machines (excluding the inclined plane) and were able to roughly calculate their mechanical advantage. For example, Heron of Alexandria (ca. 10–75 AD) in his work Mechanics lists five mechanisms that can "set a load in motion"; lever , windlass , pulley , wedge , and screw , and describes their fabrication and uses. However the Greeks" understanding was limited to the statics of simple machines (the balance of forces), and did not include dynamics , the tradeoff between force and distance, or the concept of work .

Ideal simple machine

If a simple machine does not dissipate energy through friction, wear or deformation, then energy is conserved and it is called an ideal simple machine. In this case, the power into the machine equals the power out, and the mechanical advantage can be calculated from its geometric dimensions.

Although each machine works differently mechanically, the way they function is similar mathematically. In each machine, a force F in {\displaystyle F_{\text{in}}\,} is applied to the device at one point, and it does work moving a load, F out {\displaystyle F_{\text{out}}\,} at another point. Although some machines only change the direction of the force, such as a stationary pulley, most machines multiply the magnitude of the force by a factor, the mechanical advantage

M A = F out / F in {\displaystyle \mathrm {MA} =F_{\text{out}}/F_{\text{in}}\,}

that can be calculated from the machine"s geometry and friction.

v out v in = d out d in {\displaystyle {v_{\text{out}} \over v_{\text{in}}}={d_{\text{out}} \over d_{\text{in}}}\,}

Therefore the mechanical advantage of an ideal machine is also equal to the distance ratio , the ratio of input distance moved to output distance moved

M A ideal = F out F in = d in d out {\displaystyle \mathrm {MA} _{\text{ideal}}={F_{\text{out}} \over F_{\text{in}}}={d_{\text{in}} \over d_{\text{out}}}\,}

This can be calculated from the geometry of the machine. For example, the mechanical advantage and distance ratio of the lever is equal to the ratio of its lever arms .

The mechanical advantage can be greater or less than one:

  • The most common example is a screw. In most screws, applying torque to the shaft can cause it to turn, moving the shaft linearly to do work against a load, but no amount of axial load force against the shaft will cause it to turn backwards.
  • In an inclined plane, a load can be pulled up the plane by a sideways input force, but if the plane is not too steep and there is enough friction between load and plane, when the input force is removed the load will remain motionless and will not slide down the plane, regardless of its weight.
  • A wedge can be driven into a block of wood by force on the end, such as from hitting it with a sledge hammer, forcing the sides apart, but no amount of compression force from the wood walls will cause it to pop back out of the block.

A machine will be self-locking if and only if its efficiency η is below 50%:

η ≡ F o u t / F i n d i n / d o u t < 0.50 {\displaystyle \eta \equiv {\frac {F_{out}/F_{in}}{d_{in}/d_{out}}}<0.50\,}

Whether a machine is self-locking depends on both the friction forces (coefficient of static friction) between its parts, and the distance ratio d in /d out (ideal mechanical advantage). If both the friction and ideal mechanical advantage are high enough, it will self-lock.

Proof

When a machine moves in the forward direction from point 1 to point 2, with the input force doing work on a load force, from conservation of energy the input work W 1,2 {\displaystyle W_{\text{1,2}}\,} is equal to the sum of the work done on the load force W load {\displaystyle W_{\text{load}}\,} and the work lost to friction

W 1,2 = W load + W fric (1) {\displaystyle W_{\text{1,2}}=W_{\text{load}}+W_{\text{fric}}\qquad \qquad (1)\,}

If the efficiency is below 50% η = W load / W 1,2 < 1 / 2 {\displaystyle \eta =W_{\text{load}}/W_{\text{1,2}}<1/2\,}

2 W load < W 1,2 {\displaystyle 2W_{\text{load}} 2 W load < W load + W fric {\displaystyle 2W_{\text{load}} W load < W fric {\displaystyle W_{\text{load}}

When the machine moves backward from point 2 to point 1 with the load force doing work on the input force, the work lost to friction W fric {\displaystyle W_{\text{fric}}\,} is the same

W load = W 2,1 + W fric {\displaystyle W_{\text{load}}=W_{\text{2,1}}+W_{\text{fric}}\,}

So the output work is

W 2,1 = W load − W fric < 0 {\displaystyle W_{\text{2,1}}=W_{\text{load}}-W_{\text{fric}}<0\,}

Thus the machine self-locks, because the work dissipated in friction is greater than the work done by the load force moving it backwards even with no input force

Modern machine theory

Kinematic chains

Classification of machines

The identification of simple machines arises from a desire for a systematic method to invent new machines. Therefore, an important concern is how simple machines are combined to make more complex machines. One approach is to attach simple machines in series to obtain compound machines.

However, a more successful strategy was identified by Franz Reuleaux , who collected and studied over 800 elementary machines. He realized that a lever, pulley, and wheel and axle are in essence the same device: a body rotating about a hinge. Similarly, an inclined plane, wedge, and screw are a block sliding on a flat surface.

This realization shows that it is the joints, or the connections that provide movement, that are the primary elements of a machine. Starting with four types of joints, the revolute joint , sliding joint , cam joint and gear joint , and related connections such as cables and belts, it is possible to understand a machine as an assembly of solid parts that connect these joints.

See also

References

  1. Chambers, Ephraim (1728), "Table of Mechanicks", Cyclopædia, A Useful Dictionary of Arts and Sciences , London, England, Volume 2, p. 528, Plate 11 .
  2. Paul, Akshoy; Roy, Pijush; Mukherjee, Sanchayan (2005), Mechanical sciences: engineering mechanics and strength of materials , Prentice Hall of India, p. 215, ISBN .
  3. ^ Asimov, Isaac (1988), Understanding Physics , New York, New York, USA: Barnes & Noble, p. 88, ISBN .
  4. Anderson, William Ballantyne (1914). Physics for Technical Students: Mechanics and Heat . New York, USA: McGraw Hill. pp. 112–122. Retrieved 2008-05-11 .
  5. ^ Compound machines , University of Virginia Physics Department, retrieved 2010-06-11 .
  6. ^ Usher, Abbott Payson (1988). A History of Mechanical Inventions . USA: Courier Dover Publications. p. 98. ISBN .
  7. Wallenstein, Andrew (June 2002). . Proceedings of the 9th Annual Workshop on the Design, Specification, and Verification of Interactive Systems . Springer. p. 136. Retrieved 2008-05-21 .
  8. ^ Prater, Edward L. (1994), Basic machines (PDF) , U.S. Navy Naval Education and Training Professional Development and Technology Center, NAVEDTRA 14037.
  9. U.S. Navy Bureau of Naval Personnel (1971), Basic machines and how they work (PDF) , Dover Publications.
  10. Reuleaux, F. (1963) , The kinematics of machinery (translated and annotated by A.B.W. Kennedy) , New York, New York, USA: reprinted by Dover.
  11. Cornell University , Reuleaux Collection of Mechanisms and Machines at Cornell University , Cornell University.
  12. ^ Chiu, Y. C. (2010), An introduction to the History of Project Management , Delft: Eburon Academic Publishers, p. 42, ISBN
  13. Ostdiek, Vern; Bord, Donald (2005). Inquiry into Physics . Thompson Brooks/Cole. p. 123. ISBN . Retrieved 2008-05-22 .
  14. Quoted by Pappus of Alexandria in Synagoge , Book VIII


© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows