Для чего нужен размерный анализ. Размерный анализ технологического процесса. Исходные данные для проведения размерного анализа. Размерный анализ чертежа детали

Для чего нужен размерный анализ. Размерный анализ технологического процесса. Исходные данные для проведения размерного анализа. Размерный анализ чертежа детали

26.03.2019

нформационно-коммуникационные технологии и услуги в настоящее время являются ключевым фактором развития всех областей социально-экономической сферы. Как и во всем мире, в России эти технологии демонстрируют бурные темпы роста. Так, в последние пять лет рост рынка услуг связи у нас ежегодно составляет около 40%.

В структуре расходов федерального бюджета на 2006 год впервые появился специальный инвестиционный фонд. Направления затрат этого фонда являются предметом жарких дискуссий в обществе и структурах власти. В частности, из инвестиционного фонда можно было бы финансировать и телекоммуникационные проекты, в первую очередь для того, чтобы создать цифровую инфраструктуру в общероссийском масштабе.

Надежность и доступность связи и телекоммуникационных услуг в нашей стране давно является острой проблемой, и такие информационные услуги, как высокоскоростной доступ в Интернет, видеосвязь, кабельное телевидение, IP-телефония и т.п., развиваются в основном в Москве и Санкт-Петербурге, хотя необходимость в такого рода услугах ощущают все жители России.

И пока у нас идут споры о том, стоит ли выделять средства из инвестиционного фонда на такие инфраструктурные проекты, как строительство межрегиональных цифровых магистралей (которые, кстати, могли бы послужить катализатором развития других сегментов ИТ-отрасли и экономики в целом), во всем мире близится пора кардинального увеличения пропускной способности цифровых информационных сетей, что неизбежно повлечет за собой появление качественно новых видов услуг, которые, возможно, будут нам уже просто недоступны.

Так, в сентябре 2005 года в г.Сан-Диего (США) прошли очередные конференция и выставка iGrid (http://www.igrid2005.org/index.html). Это международное движение, развивающее идею lambdaGrid: слово lambda обозначает длину волны, а Grid — «сетку» с намеком на географическую сеть параллелей и меридианов. В общем-то, это движение не такое уж и новое, а его технологические принципы давно разработаны. Речь идет о технологии DWDM (Dense Wavelengh-Division Multiplexing), то есть о глобальном мультиплексировании цифровых коммуникаций. Пожалуй, ближайшей и довольно точной аналогией для понимания основ этой технологии является переход от телеграфа и искрового радио Маркони и Попова к современному многочастотному радиовещанию, то есть сетевой мир переходит от примитивных технологий передачи данных по оптоволокну к одновременному использованию при передаче волн разной длины. Проще говоря, приемники/передатчики сигналов (DWDG-enabled FO tranceiver) из черно-белых превращаются в разноцветные. При этом сам опто-

проводник имеет уже достаточно широкую полосу прозрачности, а точнее, широкую полосу удержания пучка света внутри оптоволокна с малыми потерями на эмиссию не по направлению вдоль оси волокна, вследствие чего новых кабелей прокладывать не нужно.

К тому же новые DWDM-трансиверы — квазидуплексные, то есть по одному волокну можно передавать данные в обе стороны одновременно. В численном выражении это означает, что по нынешним десятигигабитным оптоволоконным каналам DWDM-технологии позволят передавать до 160 потоков одновременно, причем речь идет о магистральных, длинных каналах, в том числе о трансконтинентальных. Получается, что на все так называемое прогрессивное человечество вдруг сваливается такой неожиданный подарок, как увеличение пропускной способности сетей на два порядка. Кроме того, наличие множества свободных каналов позволит выделять их по мере необходимости и направлять потоки данных параллельно вместо последовательной передачи их по одному каналу, как было прежде. Естественно, для этого нужны новые аппаратно-программные решения и необходима интеграция сегодняшних владельцев сетей в единую информационную инфраструктуру.

К сожалению, подобные технологии дойдут до России еще очень не скоро, ибо пока, согласно карте мировых цифровых коммуникаций, наша страна оптоволоконными линиями не заполнена.

Российские особенности

ерьезные перемены ожидаются в России прежде всего в области организации телефонной связи PSTN (Public Switched Telephone Network — телефонная сеть общего пользования, ТСОП). Предполагается, что уже в этом году у абонентов появится возможность выбрать оператора междугородной и международной связи. Помимо «Ростелекома», свои услуги планируют предоставлять «Межрегиональный ТранзитТелеком» (МТТ), Golden Telecom, «ТрансТелеком» и др., хотя без особых нареканий сегодня работает только «Ростелеком». В принципе, должна появиться возможность пользоваться услугами сразу нескольких компаний, то есть пользователь будет выбирать, чьи минуты на нужном направлении дешевле. Каждому оператору будет присвоен код, начинающийся с цифры «5» (51, 52 и т.д.), который надо будет набирать после выхода на межгород. Пока же после набора привычной междугородной «восьмерки» абонент попадет к привычному «Ростелекому». А тем, кому уже сегодня дешевле звонить с помощью альтернативных операторов, необходимо написать заявление своему оператору связи, и тогда «восьмерка» станет выводить их в соответствующую сеть.

Продолжает увеличиваться и доля повременной оплаты телефонных переговоров фиксированной связи, постепенно догоняя по стоимости мобильную связь. Согласно вступившей в силу с 1 января 2004 года новой редакции закона о связи, компании-операторы обязаны предоставить абоненту два типа тарифов — повременный и фиксированный (естественно, при наличии технической возможности). В настоящее время не все межрегиональные компании (МРК) «Связьинвеста» даже уровня областных центров оснащены системами повременного учета стоимости переговоров — большинству не хватает денег на техническое перевооружение и введение биллинговых систем. И все же во многих регионах МРК уже в этом году абонентам предоставили возможность оплачивать телефонные переговоры новым способом.

А в соответствии с утвержденным 24 октября 2005 года постановлением Правительства РФ «О государственном регулировании тарифов на услуги общедоступной электросвязи и общедоступной почтовой связи», операторы связи при наличии технической возможности должны установить уже три обязательных тарифных плана:

  • с повременной системой оплаты;
  • с абонентской системой оплаты;
  • с комбинированной системой оплаты, согласно которой счетчик включается после «выговаривания» определенного количества времени.

Кроме того, оператор получит право, в дополнение к этим базовым тарифам, вводить любое количество других тарифных планов, а потребитель может выбрать тот, который ему больше по душе и по карману.

В свое время при полемике по поводу «повременки» было сломано немало копий, и в итоге Дума отвергла первый вариант закона о связи, в котором предполагался принудительный перевод всех абонентов фиксированной связи на повременную оплату переговоров, и был принят ныне действующий закон, дающий гражданину право выбирать тип тарифа. Конечно, не во всех регионах есть эта самая «техническая возможность» установить повременную систему оплаты (для этого многим необходимо кардинально менять оборудование, а средств для этого, как всегда, не хватает), но в некоторых регионах очень многие абоненты уже пользуются «повременкой», хотя бы по той причине, что в свое время их перевели на нее принудительно, — в частности это почти все абоненты «Уралсвязьинформа». В других регионах, где такие технические возможности имеются, но принудительного перевода не было, — примерно половина абонентов самостоятельно перешла на «повременку».

Наконец, и ОАО «Московская городская телефонная сеть» (МГТС) разрабатывает три тарифных плана на местную телефонную связь для своих абонентов — физических лиц. МГТС подала заявку на утверждение тарифных планов в декабре 2005 года, а само утверждение может произойти в начале 2006-го. Техническая возможность осуществлять повременный учет продолжительности местных телефонных соединений у МГТС давно уже есть: внедрены и системы повременного учета на телефонных узлах, и система биллинга.

МГТС — основной оператор телефонной связи в Москве, а абонентная плата для физических лиц составляет 200 руб., что в настоящий момент несколько выше среднего по стране. Так, сегодня средняя ежемесячная плата абонента фиксированной связи по России составляет 160 руб., тогда как точка безубыточности при оказании такой услуги, по мнению Мининформсвязи, составляет 210 руб. А если планировать дальнейшее расширение услуг связи, то, как считают чиновники, следует поднять среднюю месячную плату до 230-250 руб., и в ближайшие два-три года такое повышение, несомненно, последует. Однако, если сегодня резко поднять среднюю абонентную плату — процентов на 50, то абоненты фиксированной связи станут в массовом порядке отказываться от таких линий в пользу мобильной телефонии. Ведь в противном случае фиксированная связь практически сравняется по стоимости с мобильной, но при несравнимо большем удобстве последней. Например, в Москве ожидается повременная оплата исходящих звонков до 1,8 руб., а это примерно 0,06 долл., то есть столько же, сколько у не самого дешевого оператора сотовой связи необходимо заплатить за 1 мин исходящего звонка по его сети. А поскольку рост абонентской платы во всех регионах страны неизбежен, то мобильная связь становится все более привлекательной.

Со вступлением в силу с 1 января 2006 года утвержденных Правительством РФ правил оказания услуг телефонной связи перерегистрации домашнего телефона с одного владельца на другого не будет превышать размера одной месячной абонентской платы за услуги телефонной связи (сейчас плата за переоформление телефона взимается в размере платы за его установку и составляет несколько тысяч рублей). Кроме того, в регионах теперь должны будут проводиться конкурсы на право оказания универсальных услуг телефонной связи с использованием таксофонов, а также на право оказания услуг связи по передаче данных и предоставлению доступа к сети Интернет.

Тем временем Госдума решила уравнять в обязанностях мобильную и фиксированную телефонию и приняла в первом чтении проект закона «О внесении изменений в статью 54 Федерального закона “О связи”», где предполагается законодательно закрепить принцип бесплатности всех входящих звонков на любые телефоны для вызываемого лица. В соответствии с этим законопроектом не подлежит оплате абонентами любое телефонное соединение, установленное в результате вызова другим абонентом, кроме установленного с помощью телефониста с оплатой за счет вызываемого лица.

Если такой закон будет принят, то это будет еще один удар по системе фиксированной связи.

IP-телефония

IP-телефония (или VoIP, Voice over Internet Protocol — технология передачи голоса по Интернет-протоколу) — это еще одно технологическое нововведение, пришедшее к нам вместе с Интернетом и свидетельствующее о том, что мир больше не будет таким, как раньше. VoIP по сути своей является технологией, позволяющей удешевить междугородние и международные звонки в 3-5 раз. Происходит это за счет того, что основную часть пути голосовой сигнал идет по Интернету в цифровом виде, а это стоит гораздо меньших денег и позволяет достичь более высокого качества связи, чем при использовании обычных аналоговых линий.

В течение последнего года продажи систем связи на основе IP-телефонии превзошли аналогичный показатель для решений на базе стандартной телефонной линии. С июня 2004-го по июнь 2005 года объемы продаж VoIP-систем увеличились на 31%, в то время как стандартные решения продавались на 20% хуже (так пишет Networking Pipeline со ссылкой на аналитическую компанию Merrill Lynch). По всей видимости, именно из-за этого двунаправленного процесса общий рынок телефонных систем за год вырос всего на 2% и достиг 2,24 млрд. долл.

Интернет-провайдеры и телефонные операторы активно разрабатывают рынок IP-телефонии во всех развитых странах. Например, в США сегодня предлагаются такие пакеты услуг, когда примерно за 25 долл. можно оформить месячную подписку, позволяющую целый месяц без всяких ограничений звонить любым абонентам на территории США и Канады. Указанные инновации активно поощряются и американскими властями, которые, как известно, поставили своей целью способствовать развитию Интернет-технологий у себя в стране и в связи с этим на ближайшие годы почти полностью освободили Интернет-индустрию от налогов. Очевидно, что с появлением доступных массовому потребителю дешевых VoIP-услуг по всем законам рыночной экономики любой нормальный человек будет пользоваться именно ими, а не более дорогими услугами стандартных междугородних и международных операторов. Российские экономисты оценивают оборот сформировавшегося к настоящему моменту в нашей стране рынка услуг IP-телефонии в 300 млн. долл. в год. На этом рынке сейчас работают различные фирмы — как VoIP-отделения крупных телекоммуникационных компаний, так и небольшие локальные операторы.

Но если в развитых странах такая ситуация считается естественной, то в других государствах она вызывает серьезные опасения — и в первую очередь у операторов-монополистов традиционной связи, которые видят в развитии IP-телефонии прямую угрозу своим прибылям. И, вопреки законам свободного рынка, некоторые компании-монополисты пытаются этому развитию помешать, используя все доступные им способы. Так, в Коста-Рике, где уже много лет на рынке доминирует единственный национальный телефонный провайдер, в настоящее время деятельность VoIP-фирм пытаются законодательно отрегулировать, обложив их дополнительными налогами как компании-посредники, которые генерируют добавленную стоимость. Более того, предлагается даже вообще запретить работу VoIP-провайдеров, приравняв их деятельность к криминальной. Многие костариканские специалисты оценивают подобную перспективу как катастрофическую для экономики этой страны, поскольку в последнее время в Коста-Рике активно развивается индустрия удаленного программирования (аутсорсинга), для которой существенным подспорьем является возможность совершать дешевые международные звонки.

Не отстают от костариканцев и наши компании — традиционные операторы-монополисты, такие как «Ростелеком» или МГТС, которые тоже пытаются с помощью административного ресурса объявить бизнес VoIP-фирм нелегитимным. Применение административного ресурса в коммерческих целях, как считают представители независимых VoIP-компаний, просматривается, скажем, в постановлении Правительства РФ, которое 28 марта 2005 года ввело в действие разработанную под контролем Министерства информационных технологий и связи инструкцию под названием «Правила присоединения сетей электросвязи и их взаимодействия». По мнению специалистов указанных компаний, эти правила фактически запрещают оказание услуг IP-телефонии, устанавливая для них заведомо невыполнимые обязательства и строжайшие ограничения. В результате такого давления на местных VoIP-провайдеров позвонить по IP-телефонии в российские регионы или страны СНГ обходится в 2-3 раза дороже, чем в Америку и даже в Австралию.

Однако либерализацию рынка дальней связи в любом случае не остановить, поскольку это одно из ключевых требований при переговорах о вступлении России в ВТО (Всемирную торговую организацию).

Интернет по модему

так, в 2005 году тарифы компаний «Связьинвеста» выросли на 20-25%, в течение

2004-го — на 30%, а степень роста тарифов на фиксированную связь в 2006 году опять прогнозируется на уровне 30%. В частности, рост тарифов произойдет тогда, когда утвердят альтернативные тарифы для МРК. Впрочем, кошмарного опустошения наших кошельков от нового порядка предоставления услуг телефонии ожидать не стоит — напротив, те, кто говорит по телефону не очень долго, смогут даже сэкономить на повременной фиксированной связи.

Иное дело — выход в Интернет по PSTN-модему (dial-up), где поблажек от повременки ждать уже не приходится. И, видимо, этот способ выхода в Интернет будет постепенно уходить в прошлое. Конечно, провайдеры PSTN-Интернета даже в условиях безальтернативной повременки находят способы для того, чтобы их абоненты не оплачивали Интернет еще и поминутно, то есть по счетам оператора телефонии. Например, в тех городах, где уже используется повременная оплата, провайдеры вводят обратный звонок: вы звоните на модемный пул, соединение прерывается, а вам идет обратный звонок с пула уже как входящий. Windows XP, кстати, прекрасно отрабатывает такой обратный звонок, а потому соединение идет за счет провайдера Интернета. Способами существования PSTN-провайдеров являются и различные договора с операторами связи, которые предусматривают специальные (возможно, короткие) телефонные номера, позвонив на которые вы подключаетесь без абонентной платы. Впрочем, таким же способом можно договориться с телефонным оператором и об установке ADSL-оборудования (DSLAM) на узлы связи, а в результате перейти к более прогрессивным технологиям выхода в Интернет, вообще не занимающим телефонных линий.

К тому же качество изготовления самих PSTN-модемов становится всё хуже и хуже, ведь производство модемов для коммутируемых линий связи давно уже не является передовой отраслью IT-индустрии. В цивилизованном мире такой вид связи становится неактуальным из-за распространения скоростных информационных магистралей и из-за их доступности для массового потребителя — здесь в качестве основного конкурента модемной связи выступают и ISDN, и ADSL, и оптоволоконные линии связи, и Wi-Fi, и даже сотовые системы передачи данных типа GPRS и пр. Соответственно и производители теряют интерес к выпуску новых изделий, а некоторые уже свернули производство аналоговых модемов. А поскольку объемы продаж этого оборудования для передовых и наиболее доходных областей рынка резко упали, то производители стремятся максимально удешевить аппаратную часть своей продукции, что, естественно, негативным образом сказывается и на качестве связи с использованием таких модемов.

Кроме того, в связи с общим повышением качества телефонной связи в тех странах, где до сих пор продаются аналоговые модемы, производители перестают заботиться о том, чтобы их аппаратура работала на зашумленных линиях устаревших АТС. Таким образом, современные аналоговые модемы можно применять разве что в качестве резервного канала связи: там, где они еще уверенно работают, уже, как правило, хорошо развиты альтернативные способы доступа в Интернет, а там, где такие технологии не развиты, даже современные аналоговые модемы работают плохо. И выхода из этого замкнутого круга уже, похоже, не предвидится.

Российский рынок широкополосного доступа растет в первую очередь за счет индивидуального сегмента: количество домашних подключений за первую половину 2005 года увеличилось более чем в 1,5 раза и достигло 870 тыс. абонентов. Таким образом, 85% новых широкополосных подключений приходится на индивидуальных пользователей и только 15% — на корпоративный сегмент рынка.

Очевидным лидером роста среди широкополосных технологий является DSL: количество DSL-подключений выросло более чем на 60%, а если учитывать только домашние подключения, то рост DSL-рынка в этом сегменте составил даже более 80%. Но даже несмотря на столь впечатляющую динамику DSL-операторов, самым популярным способом подключения домашних пользователей остается Ethernet от домовых сетей — в сумме у них пока все равно в 2-3 раза больше абонентов, чем у DSL-операторов.

Впрочем, Россия хорошо выглядит только по динамике роста: количество широкополосных подключений в нашей стране, по данным международных информационных агентств, увеличилось на 52%, в то время как прирост в целом по миру составил всего 20%, а по Восточной и Центральной Европе (без учета России) — примерно 30%. Таким образом, по динамике Россия опережает все крупнейшие рынки широкополосного доступа, уступая только Филиппинам, Греции, Турции, Индии, Чехии, ЮАР, Таиланду и совсем немного Польше.

Однако по общему объему широкополосных подключений позиции России очень слабы — на ее долю, по данным агентства Point-Topic, на середину 2005 года приходилось лишь 0,7% всех широкополосных подключений в мире. Всего около 1,5 млн. широкополосных подключений в России сегодня выглядят несолидно по сравнению с 53 млн. в Китае, 38 млн. в США или даже 3,5 млн. в Нидерландах. Тем не менее Россия с первой попытки вошла в Тор-20 рейтинга Point-Topic по количеству широкополосных подключений и, по предварительным данным, увеличила это количество к концу года на 85%. В результате наша страна располагается сегодня на 17-18 месте, опережая не только Польшу, но и более развитую Швецию. Кстати, охват абонентов ТФОП услугами широкополосной связи (то есть потенциальная возможность подключиться к ADSL) только в центральном регионе (без учета Москвы), по информации ОАО «Связьинвест», составил 3 746 825 человек, а между тем реальное количество абонентов ADSL-доступа не превышает в этом регионе 224 тыс. абонентов.

Еще хуже обстоит у нас дело с проникновением «широкой полосы» в регионы — сегодня насчитывается всего 0,9 подключений на каждые 100 жителей. По этому показателю Россия в 10-30 раз уступает Южной Корее, Японии, США, а также ведущим странам Западной Европы и в 4 раза — среднему показателю новых членов Европейского Союза. Даже в Китае коэффициент распространения широкополосного доступа в Интернет среди китайских семей составляет около 3% (в целом по стране в 3 раза выше, чем у нас). Правда, в столице и Московской области распространенность широкополосного доступа довольно высокая (4,4 широкополосных подключений на 100 жителей) и вполне сопоставима с уровнем Венгрии, Польши или Чили, зато показатели остальной России крайне низки — всего 0,4 подключения на 100 жителей, примерно как на Ямайке или в Таиланде.

Вместо заключения

осмотрим еще раз на карту мировых цифровых коммуникаций: не будем обольщаться, что есть места и похуже России, но будем надеяться на высокую динамику роста и ждать, что нашему правительству достанет разума, чтобы направить часть затрат инвестиционного фонда на финансирование телекоммуникационных проектов, а в первую очередь — тех, которые позволят выровнять цифровую инфраструктуру в общероссийском масштабе и избавить ее от перекосов в сторону столицы.

А пока даже на российской почте пункты коллективного доступа в Интернет установлены не более чем в нескольких тысячах отделений связи. ФГУП «Почта России» планировало, конечно, увеличить до конца 2005 года число таких пунктов до 10 тыс., но что такое десяток тысяч пунктов в масштабах такой огромной страны, как наша?

СРЕДСТВА СВЯЗИ:

РАЗВИТИЕ,

ПРОБЛЕМЫ,

ПЕРСПЕКТИВЫ

МАТЕРИАЛЫ

НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«НОВОСЕЛИЦКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

НОВГОРОДСКОГО РАЙОНА НОВГОРОДСКОЙ ОБЛАСТИ

Материалы конференции содержат сведения от простейших звуковых и зрительных средствах для передачи сигналов и команд до самых современных. Показан исторический путь развития и совершенствования средств связи, роль ученых и практиков, новейшие достижения физики и техники, их практическое использование.

Урок - конференция способствует росту творческого потенциала учителя, формированию у учащихся умений самостоятельной работы с различными источниками информации, позволяет в новом свете осмыслить ранее приобретенные знания, систематизировать и обобщить их. Участие в конференции развивает способность публично выступать, слушать и анализировать сообщения своих одноклассников.

Материалы конференции рассчитаны на творческое использование и предназначены учителям в помощь при подготовке и проведении уроков по физике.

ИЗ ИСТОРИИ СРЕДСТВ СВЯЗИ

Средства связи всегда играли важную роль в жизни общества. В древние времена связь осуществлялась гонцами, передававшими сообщения устно, затем и письменно. Одними из первых стали применять сигнальные огни и дымы. Днем на фоне облаков хорошо заметен дым, даже если самого костра не видно, а ночью – пламя, особенно если оно зажжено на возвышенном месте. Сначала таким способом передавали только заранее оговоренные сигналы, скажем «враг приближается». Потом, особым образом располагая несколько дымов или огней, научились посылать целые сообщения.

Звуковые сигналы применялись главным образом на небольшие расстояния для сбора войск и населения. Для передачи звуковых сигналов применялись: било (металлическая или деревянная доска), колокол, барабан, труба, посвистель и накры.

Особо важную роль выполнял вечевой колокол в Великом Новгороде. По зову его новгородцы собирались на вече для решения военных и гражданских дел.

Для управления войсками немаловажное значение имели разной формы стяги, на которые укреплялись большие куски различных тканей яркого цвета. Военачальники носили отличительную одежду, особые головные уборы и знаки.

В средние века появилась флажная сигнализация, которую использовали во флоте. Форма, цвет и рисунок флажков имели конкретное значение. Один флажок мог означать предложение («Судно ведет водолазные работы» или «требую лоцмана»), и он же, в сочетании с другими, являлся буквой в слове.

С ХVI века на Руси распространение получила доставка информации с помощью ямской гоньбы. Ямские тракты были проложены к важным центрам государства и пограничным городам. В 1516 г. в Москве для управления почтой была создана ямская изба, а в 1550 г. был учрежден ямской приказ – центральное учреждение в России, ведавшее ямской гоньбой.

В Голландии, где было множество ветряных мельниц, несложные сообщения передавали, останавливая крылья мельниц в определенных положениях. Этот способ получил развитие в оптическом телеграфе. Между городами возводили башни, которые находились друг от друга на расстоянии прямой видимости. На каждой башне имелась пара огромных суставчатых крыльев с семафорами. Телеграфист принимал сообщение и тут же передавал его дальше, передвигая крылья рычагами.

Первый оптический телеграф построили в 1794 г. во Франции, между Парижем и Лиллем. Самая длинная линия – 1200 км –действовала в середине ХIХ в. между Петербургом и Варшавой. Линия имела 149 башен. Ее обслуживали 1308 человек. Сигнал по линии проходил из конца в конец за 15 минут.

В 1832 г офицер русской армии, ученый-физик и востоковед Павел Львович Шиллинг изобрел первый в мире электрический телеграф. В 1837 г. идею Шиллинга развил и дополнил С. Морзе. К 1850 г. русский ученый Борис Семенович Якоби создал прототип первого в мире телеграфного аппарата с буквопечатанием принимаемых сообщений.

В 1876 г. (США) изобрел телефон, а в 1895 г. русский ученый – радио. С начала ХХ в. стали внедряться радиосвязь, радиотелеграфная и радио-телефонная связь.



Карта ямских трактов XVI века. Почтовые пути России XVIII века.

КЛАССИФИКАЦИЯ СВЯЗИ

Связь может осуществляться подачей сигналов различной физической природы :

Звуковых;

Зрительных (световых);

Электрических.

В соответствии с характером сигналов , используемых для обмена информацией, средствами передачи (приема) и доставки сообщений и документов связь может быть:

Электрической (электросвязью);

Сигнальной;

Фельдъегерско-почтовой.

В зависимости от используемых линейных средств и среды распространения сигналов связь делится по роду на:

Проводную связь;

Радиосвязь;

Радиорелейную связь;

Тропосферную радиосвязь;

Ионосферную радиосвязь;

Метеорную радиосвязь;

Космическую связь;

Оптическую связь;

Связь подвижными средствами.

По характеру передаваемых сообщений и виду связь делится на;

Телефонную;

Телеграфную;

Телекодовую (передача данных);

Факсимильную (фототелеграфную);

Телевизионную;

Видеотелефонную;

Сигнальную;

Фельдъегерско-почтовую.

Связь может осуществляться путем передачи информации по линиям связи :

Открытым текстом;

Закодированной;

Зашифрованной (с помощью кодов, шифров) или засекреченной.

Различают дуплексную связь , когда обеспечивается одновременная передача сообщений в обоих направлениях и возможен перебой (переспрос) корреспондента, и симплексную связь , когда передача ведется поочередно в обоих направлениях.

Связь бывает двусторонней , при которой ведется дуплексный или симплексный обмен информацией, или односторонней , если происходит передача сообщений или сигналов в одном направлении без обратного ответа или подтверждения принятого сообщения.

СИГНАЛЬНАЯ СВЯЗЬ

Сигнальная связь, осуществляемая путем передачи сообщений в виде заранее обусловленных сигналов с помощью сигнальных средств. В Военно-Морском Флоте сигнальная связь используется для передачи служебной информации между кораблями, судами и рейдовыми постами как открытым текстом, так и сигналами, набранными по сводам.

Для сигнальной связи средствами предметной сигнализации обычно применяются одно-, двух - и трехфлажные своды сигналов ВМФ, а также флажный семафор. Для передачи открытого текста и сигнальных сочетаний сводов светосигнальными приборами применяются знаки телеграфной азбуки Морзе.

Корабли и суда ВМФ и рейдовые посты для переговоров с иностранными кораблями, торговыми судами и иностранными береговыми постами, особенно по вопросам обеспечения безопасности мореплавания и охраны человеческой жизни на море, используют Международный свод сигналов.

Сигнальные средства, средства сигнальной зрительной и звуковой связи, применяющиеся для передачи коротких команд, донесений, оповещения, обозначения и взаимного опознания.

Зрительные средства связи подразделяются на: а) средства предметной сигнализации (сигнальные флаги, фигуры, флажный семафор); б) средства световой связи и сигнализации (сигнальные фонари, прожекторы, сигнальные огни); в) пиротехнические средства сигнализации (сигнальные патроны, осветительно-сигнальные патроны, морские сигнальные факелы).

Средства звуковой сигнализации – сирены, мегафоны, свистки, гудки, судовые колокола и туманные горны.

Сигнальные средства применялись со времен гребного флота для управления судами. Они были примитивными (барабан, зажженный костер, треугольные и прямоугольные щиты). Петр I, создатель русского регулярного флота, установил различные флаги и ввел специальные сигналы. Было установлено 22 корабельных, 42 галерных флага и несколько вымпелов. С развитием флота увеличилось и число сигналов. В 1773 г. в книге сигналов содержалось 226 донесений, 45 ночных и 21 туманный сигнал.

В 1779 г. русский механик изобрел “фонарь-прожектор” со свечой и разработал специальный код для передачи сигналов. В 19 – 20 вв. дальнейшее развитие получили средства световой связи - фонари и прожекторы.

В настоящее время таблица флагов Военно-морского свода сигналов содержит 32 буквенных, 10 цифровых и 17 специальных флагов.

ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОСВЯЗИ

В конце ХХ столетия широко распространена электросвязь – передача информации посредством электрических сигналов или электромагнитных волн. Сигналы идут по каналам связи – проводам (кабелям) либо без проводов.

Все способы электросвязи – телефон, телеграф, телефакс, Интернет, радио и телевидение схожи по структуре. В начале канала стоит устройство, которое преобразует информацию (звук, изображение, текст, команды) в электрические сигналы. Затем эти сигналы переводятся в форму, пригодную для передачи на большие расстояния, усиливаются до нужной мощности и «отправляются» в кабельную сеть или излучатся в пространство.

По дороге сигналы сильно ослабевают, поэтому предусмотрены промежуточные усилители. Их нередко встраивают в кабели и ставят на ретрансляторы (от лат. re – приставка, указывающая на повторное действие, и translator – «переносчик»), передающие сигналы по наземным линиям связи или через спутник.

На другом конце линии сигналы попадают в приемник с усилителем, далее их переводят в форму, удобную для обработки и хранения, и, наконец, они снова превращаются в звук, изображение, текст, команды.

ПРОВОДНАЯ СВЯЗЬ

Проводная связь до появления и развития средств радиосвязи считалась основной. По предназначению проводная связь делится на:

Дальнюю – для межобластной и межрайонной связи;

Внутреннюю – для связи в населенном пункте, в производственных и служебных помещениях;

Служебную – для руководства эксплуатационной службой на линиях и узлах связи.

Проводные линии связи часто сопрягаются с радиорелейными, тропосферными и спутниковыми линиями. Проводная связь из-за ее большой уязвимости (природные воздействия: сильные ветры, налипание снега и льда, грозовые разряды или преступная деятельность человека) имеет недостатки в применении.

ТЕЛЕГРАФНАЯ СВЯЗЬ

Телеграфная связь применяется для передачи буквенно-цифровой информации. Слуховая телеграфная радиосвязь – наиболее простой вид связи, обладающий экономичностью и помехозащищенностью, однако ее скорость низка. Телеграфная буквопечатающая связь имеет более высокую скорость передачи и возможность документирования принимаемой информации.

В 1837 г. идею Шиллинга развил и дополнил С. Морзе. Он предложил телеграфную азбуку и более простой телеграфный аппарат. В 1884 г. американский изобретатель Морзе ввел в эксплуатацию первую в США линию пишущего телеграфа между Вашингтоном и Балтимором протяженностью 63 км. Поддержанный другими учеными и предпринимателями, Морзе добился значительного распространения своих аппаратов не только в Америке, но и в большинстве европейских стран.

К 1850 г. русский ученый Борис Семенович Якоби

(1801 – 1874 гг.) создал прототип первого в мире телеграфного аппарата с буквопечатанием принимаемых сообщений.

Принцип действия пишущего электромагнитного телеграфного аппарата следующий. Под действием поступающих с линии импульсов тока якорь приемного электромагнита притягивался, а при отсутствии тока – отталкивался. На конце якоря был закреплен карандаш. Перед ним по направляющим при помощи часового механизма перемещалась матовая фарфоровая или фаянсовая пластинка.

При работе электромагнита на пластинке записывалась волнистая линия, зигзаги которой соответствовали определенным знакам. В качестве передатчика использовался простой ключ, замыкающий и размыкающий электрическую цепь.

В 1841 г. Якоби построил первую в России линию электрического телеграфа между Зимним дворцом и Главным штабом в Петербурге, а через два года новую линию до дворца в Царском Селе. Телеграфные линии состояли из зарытых в землю медных изолированных проводов.

Во время сооружения железной дороги Петербург – Москва, правительство настаивало на прокладке вдоль нее подземной телеграфной линии. Якоби предложил строить воздушную линию на деревянных столбах, мотивируя это тем, что нельзя гарантировать надежность связи такой большой протяженности. Как и следовало ожидать, эта линия, построенная в 1852 г., из-за несовершенства изоляции не прослужила и двух лет и была заменена воздушной.

Академиком были осуществлены важнейшие работы по электри-ческим машинам, электрическим телеграфам, минной электротехнике , электрохимии и электрическим измерениям. Он открыл новый способ гальванопластики.

Сущность телеграфной связи состоит в представлении конечного числа символов буквенно-цифрового сообщения в передатчике телеграфного аппарата соответствующим числом отличающихся друг от друга сочетаний элементарных сигналов. Каждому такому сочетанию, называемому кодовой комбинацией, соответствует какая-либо буква или цифра.

Передача кодовых комбинаций обычно осуществляется двоичными сигналами переменного тока, модулированными чаще всего по частоте. При приеме происходит обратное преобразование электрических сигналов в знаки и регистрация этих знаков на бумаге в соответствии с принятыми кодовыми комбинациями.


Телеграфная связь характеризуется надежностью, скоростью телеграфирования (передачи), достоверностью и скрытностью передаваемой информации. Телеграфная связь развивается в направлении дальнейшего совершенствования аппаратуры, автоматизации процессов передачи и приема информации.

ТЕЛЕФОННАЯ СВЯЗЬ

Телефонная связь предназначена для ведения устных переговоров между людьми (личных или служебных). При управлении сложными системами ПВО, железнодорожного транспорта , нефте - и газопроводами применяется оперативная телефонная связь, которая обеспечивает обмен информацией между центральным пунктом управления и управляемыми объектами, находящимися на расстоянии до несколько тысяч км. Возможна запись сообщений на звукозаписывающие устройства.

Телефон был изобретен американцем 14 февраля 1876 г. Конструктивно телефон Белла представлял собой трубку, внутри которой находился магнит. На полюсных наконечниках его надета катушка с большим числом витков изолированного провода. Против полюсных наконечников расположена металлическая мембрана.

Телефонная трубка Белла служила для передачи и приема звуков речи. Вызов абонента производился через эту же трубку при помощи свистка. Дальность действия телефона не превышала 500 м.

Миниатюрная цветная телекамера, снабженная микролампочкой, превращается в медицинский зонд. Вводя его в желудок или пищевод, врач исследует то, что раньше мог видеть только во время хирургического вмешательства.

Современное телевизионное оборудование позволяет контролировать сложные и вредные производства. Оператор-диспетчер на экране монитора наблюдает за несколькими технологическими процессами одновременно. Аналогичную задачу решает и оператор-диспетчер службы безопасности дорожного движения, следя на экране монитора за транспортными потоками на дорогах и перекрестках.

Телевидение широко применяется для наблюдения, разведки, контроля, связи, управления войсками, в системах наведения оружия, навигации, астроориентации и астрокоррекции, для наблюдения за подводными и космическими объектами.

В ракетных войсках телевидение позволяет осуществлять контроль за подготовкой к пуску и пуском ракет, наблюдение за состоянием агрегатов и узлов в полете.

На флоте телевидение обеспечивает контроль и наблюдение за надводной обстановкой, обзор помещений, техники и действий личного состава, поиск и обнаружение затонувших объектов, донных мин, аварийно-спасательные работы.

Малогабаритные телевизионные камеры могут доставляться в район разведки с помощью артиллерийских снарядов, беспилотных самолетов, управляемых по радио.

Телевидение нашло широкое применение в тренажерах.

Телевизионные системы, работающие в комплексе с радиолокационной, радиопеленгаторной аппаратурой, используются для обеспечения диспетчерской службы в аэропортах, полетов в сложных метеоусловиях и слепой посадки самолетов.

Применение телевидения ограничивается недостаточной дальностью действия, зависимостью от метеоусловий и освещенности, низкой помехоустойчивостью.

Тенденции развития телевидения – расширение диапазона спектральной чувствительности, внедрение цветного и объемного телевидения, снижение массы и габаритов аппаратуры.

ВИДЕОТЕЛЕФОННАЯ СВЯЗЬ

Видеотелефонная связь – объединение телефонной связи и замедленного телевидения (с малым числом строк развертки) – может быть осуществлена по телефонным каналам. Она позволяет видеть собеседника и показывать несложные неподвижные изображения.

ФЕЛЬДЪЕГЕРСКО – ПОЧТОВАЯ СВЯЗЬ

Производится доставка документов, периодической печати, посылок и личной корреспонденции при помощи фельдъегерей и подвижных средств связи : самолетов, вертолетов , автомобилей, БТР, мотоциклов, катеров и др.

КАЧЕСТВО СВЯЗИ

Качество связи определяется совокупностью ее взаимосвязанных основных свойств (характеристик).

Своевременность связи – способность ее обеспечить передачу и доставку сообщений или ведение переговоров в заданное время – определяется временем развертывания узлов и линий связи, быстротой установления связи с корреспондентом, скоростью передачи информации.

Надежность связи – ее способность безотказно (устойчиво) работать в течение определенного отрезка времени с заданными для данных условий эксплуатации достоверностью, скрытностью и быстротой. Существенное влияние на надежность связи оказывает помехоустойчивость системы связи, линий, каналов, которая характеризует их способность функционировать в условиях воздействия всех видов помех.

Достоверность связи – ее способность обеспечивать прием передаваемых сообщений с заданной точностью, которая оценивается потерей достоверности, то есть отношением числа знаков, принятых с ошибкой, к общему числу переданных.

В обычных линиях связи потеря достоверности в лучшем случае 10-3 – 10-4, поэтому в них применяются дополнительные технические устройства для обнаружения и исправления ошибок. В автоматизированных системах управления развитых стран мира норма достоверности составляет 10-7 – 10-9.

Скрытность связи характеризуется скрытностью самого факта связи, степенью выявления отличительных признаков связи, скрытностью содержания передаваемой информации. Скрытность содержания передаваемой информации обеспечивается за счет применения аппаратуры засекречивания, шифрования, кодирования передаваемых сообщений.

ПЕРСПЕКТИВЫ РАЗВИТИЯ СВЯЗИ

В настоящее время совершенствуются все рода и виды связи и соответствующие им технические средства. В радиорелейной связи используются новые участки сверхвысокочастотного диапазона частот. В тропосферной связи принимаются меры против нарушений связи за счет изменения состояния тропосферы. Космическая связь совершенствуется на основе «стационарных» спутников-ретрансляторов с аппаратурой многостанционного доступа. Получает развитие и практическое применение оптическая (лазерная) связь в первую очередь для передачи больших объемов информации в реальном масштабе времени между спутниками и космическими кораблями.

Большое внимание уделяется стандартизации и унификации блоков, узлов и элементов аппаратуры различных назначений в целях создания единых систем связи.

Одним из основных направлений совершенствования систем связи в развитых странах является обеспечение передачи всех видов информации (телефон, телеграф, факсимиле, данные ЭВМ и др.) в преобразованном дискретно-импульсном (цифровом) виде. Цифровые системы связи обладают большими преимуществами при создании глобальных систем связи.

ЛИТЕРАТУРА

1. Информатика. Энциклопедия для детей. Том 22. М., «Аванта+». 2003.

2. У истоков телевидения. Газета «Физика», № 16 за 2000 г.

3. Крег А., Росни К. Наука. Энциклопедия. М., «Росмэн». 1994.

4. Кьяндская-, К вопросу о первой в мире радиограмме. Газета «Физика», № 12 за 2001 г.

5. Морозов изобрел, и на что получил патент Г. Маркони. Газета «Физика», № 16 за 2002 г.

6. MS – DOS - не вопрос! Редакционно-издательский центр «Ток». Смоленск. 1993.

7. Рейд С., Фара П. История открытий. М., «Росмэн». 1995.

8. Советская военная энциклопедия. М., Военное издательство Министерства обороны. 1980.

9. Техника. Энциклопедия для детей. Том 14. М., «Аванта+». 1999.

10. Туровский военной связи. Том 1,2,3. М., Военное издательство. 1991.

11. Уилкинсон Ф., Поллард М. Ученые, изменившие мир. М., «Слово». 1994.

12. Урвалов телевизионной техники. (О). Газета «Физика», № 26 за 2000 г.

13. Урвалов электронного телевидения. Газета «Физика», № 4 за 2002 г.

14. Федотов схемы О. Лоджа, Г. Маркони. Газета «Физика», № 4 за 2001 г.

15. Физика. Энциклопедия для детей. Том 16. М., «Аванта+». 2000.

16. Хафкемейер Х. Internet. Путешествие по всемирной компьютерной сети. М., «Слово». 1998.

17. У истоков радиолокации в СССР. М., “Советское радио”. 1977.

18. Шменк А., Вэтьен А., Кете Р. Мультимедиа и виртуальные миры. М., «Слово». 1997.

Предисловие … 2

Из истории средств связи … 3

Классификация связи … 5

Сигнальная связь … 6

Физические основы электросвязи … 7

Проводная связь … 7

Телеграфная связь … 8

Телефонная связь … 10

Телекодовая связь … 12

Интернет … 12

Оптическая (лазерная) связь … 14

Факсимильная связь … 14

Радиосвязь … 15

Радиорелейная связь … 17

Тропосферная связь … 17

Ионосферная радиосвязь … 17

Метеорная радиосвязь … 17

Космическая связь … 18

Радиолокация … 18

Телевизионная связь … 21

Видеотелефонная связь … 24

Фельдъегерско-почтовая связь … 24

Качество связи … 25

Перспективы развития связи … 25

Литература … 26

Ответственная за выпуск:

Компьютерная верстка: Пресс Борис

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ДИПЛОМНЫЙ ПРОЕКТ

Разработка перспективной системы радиосвязи в гражданской авиации

  • Аннотация
  • Перечень сокращений
  • Введение
  • 1. Общая часть
  • 2. Специальная часть
  • 2.1.1 Общие требования
  • 2.1.2 Выбор типа сигнала
  • 2.1.4 Дальность связи
  • 2.1.6. Помехозащищенность
  • 2.1.8 Основные типы ШПС
  • 2.3 Разработка функциональной схемы генератора опорной псевдослучайной последовательности
  • 2.3.1 Обоснование алгоритма работы генератора опорной ПСП
  • 2.3.2 Обоснование функциональной схемы генератора
  • 2.4 Разработка принципиальной схемы генератора опорной псевдослучайной последовательности
  • 2.4.1 Выбор элементной базы
  • 2.4.2 Расчет принципиальной схемы
  • 2.4.3 Работа принципиальной схемы
  • 3. Техническая эксплуатация
  • 3.1 Расчет энергопотребления
  • 3.2 Расчет быстродействия
  • 3.3 Расчет надежности
  • 3.4 Анализ эффективности разработанного генератора ПСП
  • 3.5 Разработка инструкции по технической эксплуатации
  • 5. Безопасность и экологичность
  • 5.1 Охрана труда
  • 5.1.1 Анализ опасных и вредных производственных факторов
  • 5.1.2 Мероприятия по технике безопасности
  • 5.1.3 Мероприятия производственной санитарии
  • 5.1.4 Мероприятия пожарной и взрывной безопасности
  • 5.2 Экологичность проекта
  • 6. Экономическое обоснование
  • 6.1 Назначение проекта
  • 6.2 Производственные затраты
  • 6.2.1 Материальные издержки
  • 6.2.2 Стоимость материалов
  • 6.2.3 Стоимость покупных комплектующих изделий
  • 6.3 Издержки на оплату труда персонала
  • 6.4 Калькуляционные издержки
  • 6.5 Издержки на оплату услуг сторонних организаций
  • 6.6 Стоимость реализации проекта
  • 6.7 Цена изделия
  • 6.8 Инвестиции, необходимые для реализации проекта
  • 6.9 Эксплуатационные расходы
  • 6.9.1 Издержки на оплату труда персонала
  • 6.9.2 Амортизационные отчисления
  • 6.9.3 Затраты на техническое обслуживание и ремонт
  • 6.9.4 Расходы на электроэнергию
  • 6.9.5 Прочие расходы
  • 6.10 Потоки денежных поступлений и выплат
  • 6.11 Расчет показателей оценки эффективности инвестиций
  • 6.11.1 Срок окупаемости инвестиций
  • 6.11.2 Чистый дисконтированный доход
  • 7. Безопасность полетов
  • Заключение
  • Список использованных источников

Аннотация

Авиационная воздушная УКВ радиосвязь является одним из основных видов связи, используемых для обеспечения управления полетами ЛА. В настоящее время к системам авиационной радиосвязи предъявляются достаточно жесткие требования по помехоустойчивости, достоверности и скорости передачи информации потребителям.

Целью дипломного проекта является разработка перспективной системы УКВ радиосвязи, обладающей повышенной помехоустойчивостью по сравнению с используемыми в гражданской авиации.

Для этого предлагается использовать новые принципы организации связи, базирующиеся на применении сложных сигналов. Проектируемая система обладает также более высокой по сравнению с существующими системами радиосвязи надежностью благодаря применению современной и более надежной элементной базы.

Основное внимание в ходе проектирования обращено на разработку принципов функционирования и схемы генератора псевдослучайной последовательности.

Перечень сокращений

AM - амплитудная модуляция

АСКУ - аппаратура сопряжения, контроля и управления

БЕВЧ - блок единого времени и частоты

БК - блок контроля

ВЧ - высокая частота

ВЧП - высокочастотный переключатель

ГА - гражданская авиация

ГОПСП - генератор опорной псевдослучайной последовательности"

ДЧС - дискретно-частотный сигнал

ДПП - диспетчерский пункт подхода

ЗИП - запасное имущество и принадлежности

ИМС - интегральная микросхема

KB - короткие волны

КП - канальный процессор

ЛА - летательный аппарат

ДОС - линейная обратная связь

МВД - местные воздушные линии

МДП - местный диспетчерский пункт

МШ - магистральная шина

МУ - модуль управления

МЧС - многочастотный сигнал

НОС - нелинейная обратная связь

ОГ - опорный генератор

ОВЧ - очень высокая частота

ОМ - однополосная модуляция

ОС - основная станция

ПДСП - производственно-диспетчерская служба предприятия

ПРЦ - передающий радиоцентр

ПРМЦ - приемный радиоцентр

ПСП - псевдослучайная последовательность

РЭО - радиоэлектронное оборудование

С - синхронизатор

СДП - стартовый диспетчерский пункт

СП - сигнальный процессор

СЧ - синтезатор частот

ТП - терминальный процессор

ТТЛ - транзисторно - транзисторно логика

УВД - управление воздушным движением

УКВ - ультракороткие волны

УМ - усилитель мощности

ФМС - фазаманипулированые сигналы

ЧМ - частотная модуляция

ЦКС - центр коммутации сообщений

ШПС - широкополосный сигнал

ШСС - широкополосная система связи

ЭМИ - электромагнитное излучение

ЭМС - электромагнитная совместимость

ЭСЛ - эммитерно-связная логика

Введение

Гражданская авиация (ГА) является одной из основных составных частей транспортной системы государства, от эффективности работы которой зависит обеспечение потребностей населения и объектов хозяйственной системы в воздушных перевозках. При этом мировая тенденция состоит в постоянном повышении объема воздушных перевозок, росте пассажирооборота и соответственно повышении интенсивности воздушного движения.

Успешное решение стоящих перед ГА народнохозяйственных задач обеспечивается оснащением авиакомпаний новыми типами самолетов и вертолетов, оборудованных все более совершенными и эффективными системами, а также модернизацией уже существующих образцов техники. Высокими темпами ведутся работы по созданию и вводу в эксплуатацию самолетов, технические и экономические характеристики которых соответствуют современным требованиям. Одновременно с этим совершенствуются радиотехнические средства наземного обеспечения полетов - системы радиосвязи, радиолокации и радионавигации.

В связи с повышением интенсивности воздушного движения и расширением круга задач, решаемых с помощью авиации, остается важнейшей проблемой обеспечение высокого уровня безопасности полетов. Одним из основных факторов в обеспечении безопасности воздушного движения является четкий и постоянный контроль за самолетами и вертолетами в воздушном пространстве, своевременное и надежное управление ими. С этой целью применяются разнообразные средства радиосвязи, использующие различные диапазоны радиоволн, прежде всего ультракоротковолновый (УКВ).

Средства радиосвязи УКВ диапазона, обладая высокой пропускной способностью, обеспечивают устойчивую и бесперебойную связь между объектами в пределах прямой видимости, что обусловлено особенностями распространения радиоволн. Однако повышение интенсивности воздушного движения приводит к увеличению числа самолетов в ограниченном объеме воздушного пространства, что неблагоприятно сказывается на качестве радиосвязи, так как возрастает вероятность ее нарушения из-за воздействия взаимных помех от работающих абонентов. Кроме этого, возрастают требования к качеству и достоверности передачи информации в авиационных каналах радиосвязи.

В настоящее время основными направлениями совершенствования радиоэлектронной аппаратуры, являются: микроминиатюризация, стандартизация и унификация, применения современных видов сигналов, методов формирования и обработки информации.

В дипломном проекте предлагается перспективная система радиосвязи, обладающая повышенной помехоустойчивостью благодаря использованию современных видов сигналов - так называемых псевдослучайных сигналов. Основное внимание обращено на разработку передающей аппаратуры системы связи, а именно устройства формирования псевдослучайного сигнала - генератора кода.

1. Общая часть

1.1 Задачи воздушной радиосвязи

Радиосвязь является основным средством обеспечения связи между наземными службами управления воздушным движением (УВД) и ЛА в полете. Радиосвязь осуществляется на выделенных ICAO для этих целей частотах в диапазонах коротких (KB) и ультракоротких (УКВ) волн. Основными для систем УВД являются УКВ каналы радиосвязи. Каналы KB радиосвязи используются в основном для осуществления дальней связи с ЛА для УВД в районе, где нет УКВ радиосвязи, а также для резервирования каналов УКВ радиосвязи.

Организация авиационной воздушной радиосвязи должна обеспечивать ведение прямых переговоров в радиотелефонном режиме между диспетчерами пунктов УВД и экипажами ЛА на всю глубину их полета в пределах воздушного пространства диспетчерского района (зоны, сектора). При этом радиосвязь должна обладать высокой надежностью, так как потеря радиосвязи с летательными аппаратами рассматривается как чрезвычайное происшествие, могущее вызвать тяжелые последствия.

Для повышения надежности радиосвязи в каждом аэропорту необходимо иметь резерв радиосредств, готовый к немедленному использованию по заранее разработанной схеме резервирования.

Авиационная воздушная радиосвязь на диспетчерских пунктах служб УВД организуется и обеспечивается:

в верхнем и нижнем воздушном пространстве РДС. При этом УКВ радиосвязь для диспетчеров верхнего и нижнего воздушных пространств РДП (а при делении этих пространств на секторы - для диспетчеров РДП каждого сектора) обеспечивается на раздельных каналах. Каналы KB радиосвязи могут организовываться на раздельных частотах для каждого диспетчера РДП. на одной частоте для нескольких диспетчеров РДП, на общих частотах для одного РДС или для группы смежных РДС, работающих в сети с использованием "семейства" частот;

В районе аэродрома (подхода) и в зоне взлета и посадки радиосвязь организуется и обеспечивается только средствами УКВ радиосвязи. При этом для диспетчеров ДПП, ДПСП организуются УКВ каналы на раздельных § частотах. Диспетчер СДП должен работать, как правило, на частоте ДПСП, за исключением аэропортов с интенсивным воздушным движением, где при необходимости на СДП могут выделяться два УКВ канала: один - на частоте посадки, другой - на частоте круга;

В зоне МВД радиосвязь организуется средствами УКВ и KB радиосвязи. При этом радиосвязь обеспечивается на общей частоте для всех МДП определенного района.

На диспетчерских пунктах службы движения авиационная воздушная радиосвязь применяется:

на РДП для управления полетами в районе ответственности РДС;

на МДП для управления полетами на местных воздушных линиях;

на ДПП для управления полетами в районе аэродрома (коридорах подхода);

на ДПСП и СДП для управления полетами в зоне взлета и посадки, а также на аэродроме при рулении.

Организация радиосвязи на указанных пунктах призвана обеспечить решение следующих задач по УВД:

выполнение полетов по установленным маршрутам в заданное расписанием время и с соблюдением безопасных интервалов и дистанций между ЛА;

подвод ЛА к границам районов аэропортов и смежным районам диспетчерского руководства строго по линии заданного пути на наивыгоднейших высотах полета с соблюдением безопасных интервалов и дистанций между ЛА;

радиосвязь генератор гражданская авиация

предотвращение уклонения ЛА в случае вынужденного изменения маршрута при обходе районов со сложными метеоусловиями, в запретные зоны, в сторону государственной границы и в районы высоких препятствий (гор,

искусственных сооружений), когда высота полета не обеспечивает их преодоления.

По каналам авиационной воздушной радиосвязи, кроме того, обеспечивается передача разного рада сообщений по условиям полета, радионавигации, безопасности и регулярности полетов.

Для обеспечения передачи сообщений используются радиосети авиационной воздушной радиосвязи, которые организуются в соответствии с указаниями и действующими регламентами.

Таким образом, ЛА ведут радиосвязь в полете с пунктами УВД, расположенными в районе вылета, по маршруту полета и в районе посадки. При этом авиационная воздушная радиосвязь организуется для непосредственного управления полетами:

районными диспетчерскими пунктами и вспомогательными районными диспетчерскими пунктами - в верхнем и нижнем воздушном пространстве РДС в районе вылета, на маршруте и в районе посадки:

диспетчерскими пунктами подхода - в районах аэродрома вылета, аэродромов на маршруте полета и аэродрома посадки;

диспетчерскими пунктами системы посадки, старшими диспетчерскими пунктами - в зоне взлета и посадки.

Каждый из указанных диспетчерских пунктов для ведения переговоров с ЛА в своем районе (зоне, секторе) должен быть обеспечен надежной и четко действующей радиосвязью.

Диапазон УКВ является основным для использования в воздушной и наземной авиационной радиосвязи, что связано с его достаточно высокой емкостью и пропускной способностью. При этом распространение радиоволн УКВ диапазона имеет ряд специфических особенностей, основной из которых является возможность распространения радиоволн только в пределах прямой видимости.

Радиосвязь может организовываться на основе линейного и радиального принципов. Тот или иной принцип выбирается исходя из условий задач радиосвязи, характера и интенсивности радиообмена и наличия технических средств.

Линейный принцип применяется при построении канала радиосвязи между двумя пунктами, на каждом из которых устанавливаются приемопередающие радиостанции, работающие на радиоданных, выделенных для данной радиолинии. При построении каналов радиосвязи по линейному принципу могут применяться различные варианты назначения радиоданных для радиолинии в зависимости от ее назначения и задач связи, а именно:

одна частота для радиообмена (круглосуточная, ночная, дневная);

несколько частот для радиообмена, которые применяются в зависимости от обстановки и условий связи (радиопомехи, непрохождение связи на основной частоте и т.д.);

две частоты для радиообмена (на разных частотах приема и передачи).

Назначение частот по тому или иному варианту зависит от конкретных условий организации радиосвязи, задач и характера радиообмена, а также наличия средств и частот радиосвязи.

На отдельных направлениях радиосвязи в зависимости от расстояния между абонентами каналы по линейному принципу могут строиться с применением ретрансляционных станций. При этом радиосвязь с использованием ретрансляторов может осуществляться как на одной частоте приема и передачи, так и на двух частотах.

При больших потоках информации и наличии соответствующих средств ретрансляции каналы по линейному принципу могут строиться с применением промежуточных пунктов автоматической ретрансляции. При автоматической ретрансляции необходимо назначать не менее двух частот для обеспечения симплексной связи.

При построении каналов по радиальному принципу (радиосети) имеется возможность обеспечивать с помощью одной радиостанции радиосвязь с группой корреспондентов, у каждого из которых установлена приемопередающая радиостанция, работающая на радиоданных, выделенных для данной сети (радиоканала).

Радиальный принцип позволяет организовывать и обеспечивать с помощью одной радиостанции и дополнительных приемников радиосвязь с данного пункта управления с многими пунктами, что говорит об экономичности радиального принципа. При этом в зависимости от назначения каналы радиосвязи, организованные по радиальному принципу, могут иметь различную надежность и пропускную способность.

Радиальный принцип при построении каналов воздушной авиационной радиосвязи является основным. При этом сети воздушной авиационной радиосвязи работают, как правило, на одной частоте приема и передачи в симплексном режиме.

1.2 Основные требования к средствам авиационной воздушной связи

Передающий радиоцентр (ПРЦ) предназначен для организации авиационной подвижной воздушной электросвязи в диапазонах ОВЧ и ВЧ (обеспечение передачи информации в аналоговом и цифровом видах от диспетчерских наземных служб УВД экипажам воздушных судов), а также для организации авиационной фиксированной электросвязи.

Приемный радиоцентр (ПРМЦ) предназначен для организации авиационной подвижной воздушной электросвязи ОВЧ и ВЧ диапазонов (обеспечение приема информации в аналоговом и цифровом видах диспетчерскими наземными службами от экипажей воздушных судов), а также для организации авиационной фиксированной электросвязи.

Автономный ретранслятор авиационной подвижной воздушной связи (АРТР) предназначен для организации сплошного радиоперекрытия зон ответственности районных центров УВД различного уровня автоматизации многочастотным полем авиационной подвижной воздушной связи и обеспечения обмена информацией в аналоговом и цифровом видах между диспетчерскими наземными службами УВД и экипажами воздушных судов.

Средства авиационной подвижной воздушной связи ОВЧ - диапазона предназначены для использования в качестве основных средств связи аэродромных и районных диспетчерских пунктов, а также как резервные и I аварийные (с электропитанием от аккумуляторов) средства связи при отказе основных передающих и приемных устройств объектов ПРЦ и ПРМЦ.

Средства радиосвязи и ретрансляторы ВЧ - диапазона предназначены для организации радиоперекрытия зон ответственности районных центров УВД радиополем авиационной подвижной связи ВЧ - диапазона с целью обеспечения обмена информацией в аналоговом и цифровом видах между диспетчерскими пунктами УВД и экипажами ВС на участках маршрутов и трасс полетов.

Оборудование центров коммутации сообщений (ЦКС) предназначено для приема, анализа, маршрутирования, передачи, архивации сообщений, контроля состояния каналов связи и очередей на передачу, поддержания технологического единства сети телеграфной связи гражданской авиации.

В состав средств ПРЦ должны входить:

антенно-фидерная система;

антенно-фильтровые, развязывающие и переключающие устройства;

радиопередатчики ОВЧ - диапазона;

радиопередатчики ВЧ - диапазона;

аппаратура служебной связи;

вводно-коммутационные устройства с молниезащитой;

комплект ЗИП и КИП;

В состав средств ПРМЦ должны входить:

антенно-фидерная система:

мачты для размещения антенной системы;

радиоприемники ОВЧ - диапазона;

радиоприемники ВЧ - диапазона;,

аппаратура сопряжения, контроля и дистанционного управления;

аппаратура служебной связи;

вводно-коммутационные устройства с молниезашитой;

средства гарантированного электропитания;

комплект ЗИП и КИП;

комплект эксплуатационной документации ЭД.

В состав средств автономного ретранслятора авиационной подвижной воздушной связи должны входить:

мачта для размещения антенных систем;

приемо-передающая антенно-фидерная система;

приемо-передающие антенные фильтры, объединители, разветвители и коммутаторы ОВЧ сигналов;

передатчики ОВЧ иапазона;

- приемники ОВЧ диапазона;

аппаратура сопряжения, контроля и управления (АСКУ);

аппаратура служебной связи (при необходимости);

вводно-кроссовое оборудование с устройствами молниезащиты;

средства гарантированного электропитания;

комплект ЗИП и КИП;

комплект эксплуатационной документации.

Требования к оборудованию центров коммутации сообщений (ИКС).

Взаимодействие ЦКСов в процессе обмена информационными и служебными сообщениями должно производиться в соответствии с требованиями и рекомендациями следующих документов:

приложение 10 к Конвенции ИКАО тома 1 и 2 для телеграфной связи АФТН;

требования к функциональным характеристикам средств коммутации сообщений телеграфной сети связи ГА.

обмен информацией по телеграфным каналам связи должен осуществляться одной из скоростей: 50, 100 Бод для кода МКТ-2 или 100, 200 Бод для кода СТ-5 (КОИ-7).

ЦКС должен сопрягаться с телеграфными каналами в соответствии с требованиями ГОСТ 22937-78 (ГОСТ 18664-73) и обеспечивать возможность работы по телеграфным каналам связи и/или физическим линиям. ЦКС должен обеспечивать прием, обработку, хранение и передачу информации по телеграфным каналам при круглосуточном режиме работы.

ЦКС должен выполнять функции краткосрочной и долгосрочной архивации сообщений и их журналов. Доступ к этим архивам должен обеспечиваться соответствующими процедурами.

В ЦКС должна быть предусмотрена возможность управления основными параметрами. С помощью команд должно производиться изменение состояния и характеристик каналов связи, маршрутов, адресных указателей, а также обеспечиваться контроль и управление техническими средствами ЦКС и осуществление их реконфигурации, включение и отключение их работы, управление ресурсами.

Должна обеспечиваться возможность реконфигурации технических средств ЦКС для проведения диагностики, технического обслуживания и ремонта оборудования. Изменение режимов работы и состояния технических средств не должно приводить к потере сообщений или перерыву во взаимодействии с сетью.

ЦКС должен обеспечивать возможность подготовки сообщений для передачи в сеть, вывода неформатных сообщений для их корректировки или принятия соответствующего решения, обработку служебных сообщений, вывод извещений о состоянии каналов связи и работе оборудования, поиск и вывод сообщений. Для передачи информационных и служебных сообщении может использоваться один из двух типов телеграфных кодов (МКТ-2 или МКТ-5), поэтому должно быть предусмотрено однозначное преобразование между двумя типами телеграфных кодов.

В процедурах телеграфного обмена предусматривается обработка сообщений, принятых с отклонениями от стандартного формата в пределах допусков. Такие сообщения перед передачей должны быть преобразованы в сообщения, не имеющие отклонения от стандартного формата.

Основные технические характеристики средств авиационной воздушной электросвязи ОВЧ и ВЧ диапазонов должны соответствовать требованиям, изложенным в табл.1.1

Таблица 1.1

Наименование характеристики

Един. измер.

Норматив

Основные характеристики радиопередатчиков ОВЧ-диапазона

Диапазон частот

Сетка частот

Выходная мощность на нагрузке 50 Ом

Максимальная глубина

модуляции

Полоса пропускания по уровню 6 дБ:

Для сетки частот 25 кГц

для сетки частот 8,33 кГц

Уровень входного НЧ-сигнала

на нагрузке 600 Ом

Стабильность частоты:

для сетки частот 25 кГц

для сетки частот 8,33 кГц

Основные характеристики радиоприемников ОВЧ - диапазона

Чувствительность, не хуже

Таким образом, проведенный анализ показывает, что средства авиационной воздушной радиосвязи играют весьма важную роль в процессе обеспечения управления воздушным движением. От качества функционирования каналов радиосвязи, достоверности, оперативности доставки информации потребителям, прежде всего экипажам ВС, зависит уровень безопасности и регулярность полетов самолетов ГА. Поэтому необходимо постоянно совершенствовать возможности и характеристики систем радиосвязи, применяемых в ГА.

2. Специальная часть

Эксплуатационно-техническими характеристиками называют данные о функциональных возможностях и качестве работы систем связи. На первое место пользователь (эксплуатант) выдвигает эксплуатационные характеристики: информационные, эргономические, энергетические и обобщенные.

Информационные характеристики позволяют оценивать качество связи. При ведении связи существуют проблемы, связанные с искажениями принятых сообщений и нарушениями связи, при которых сообщения или их части не доходят до адресата.

Эргономические характеристики отражают степень приспособленности средств связи и устройств воспроизведения сообщений к потребностям эксплуатанта или оператора.

Экономические характеристики позволяют оценить затраты энергии и ресурсов на передачу сообщений с требуемым качеством.

Обобщенные характеристики предназначены для интегрального описания основных свойств системы связи и степени их соответствия некоторой эталонной системе.

Технические характеристики отражают особенности технической реализации систем связи и несут дополнительную информацию об их эксплуатационных возможностях.

К основным техническим характеристикам систем радиосвязи относятся диапазон волн, ширина полосы частот канала, число каналов, дальность действия, способы разделения каналов, энергетические характеристики (уровни сигналов и помех), используемые методы кодирования и модуляции.

Диапазоны используемых радиоволн и другие основные характеристики каналов воздушной радиосвязи регламентированы ICАО и Международным союзом электросвязи (см. табл.2.1)

Таблица 2.1.

Диапазон частот,

Число каналов

Частотный

Допустимая

интервал, кГц

нестабильность

100*10 -6 .2*10 -7

Анализ данных, приведенных в табл.2.1 показывает, что для организации каналов УКВ радиосвязи выделены два участка диапазона: от 118 до 136 МГц и от 220 до 400 МГц.

Рассмотрим характеристики радиостанций УКВ диапазона, эксплуатируемых в ГА в настоящее время.

В настоящее время в ГА эксплуатируются следующие типы бортовых командных радиостанций: "Баклан-5", "Баклан-20", и "Орлан". Для повышения надежности управления ЛА на борту обычно устанавливаются две радиостанции. Основные характеристики перечисленных бортовых радиостанций приведены в табл.2.2.

В качестве наземных радиостанций УКВ каналов радиосвязи, устанавливаемых на диспетчерских пунктах, используются радиостанции "Полет-1 А", "Баклан-РН", передатчик "Ясень", приемник Р-870М. Основные технические данные радиостанций этого типа приведены в табл.2.3.

Данные, приведенные в таблицах, показывают, что характеристики бортовых и наземных радиостанций УКВ диапазона примерно аналогичны.

При этом диапазон частот, используемый наземными радиостанциями, шире, что позволяет создать большее число каналов связи. Большей у наземных станций является и мощность излучения. При этом следует отметить, что в наиболее совершенной из наземных радиостанций используется не только обычный режим работы с излучением амплитудно-модулированных (AM) колебаний, но введены также режимы амплитудной манипуляции (АМн) и однополосной модуляции (ОМ). Введение этих режимов излучения связано со стремлением разработчиков повысить помехоустойчивость каналов УКВ радиосвязи (известно, что помехоустойчивость каналов связи с AM самая низкая).

Однако принятие таких мер не позволяет кардинальным образом улучшить информационные, экономические и технические (прежде всего энергетические) характеристики систем радиосвязи.

Это вызвано тем, что существующие каналы связи с AM, АМн и ОМ имеют недостаточно высокую помехоустойчивость, что приводит к искажениям принимаемой информации. Если при передаче речевых (аналоговых) сигналов воздействие помех может быть частично скомпенсировано за счет некоторой информационной избыточности и натренированности органов восприятия оператора, повторением передаваемых сообщений, то при передаче информации по цифровым каналам связи требования к вероятности искажения символов при приеме (не более 10 -6 .10 -8) значительно ужесточаются.

Верность передачи сообщений обеспечивается проведением мероприятий по уменьшению уровня помех, применением радиостанций, обладающих повышенной мощностью излучения, надлежащего разноса несущих частот соседних каналов связи, фильтров, согласованных с применяемыми сигналами, помехоустойчивых кодов и видов модуляции.

Таблица 2.2

Параметр

Диапазон частот, МГц

Дискретность сетки частот, кГц

Число фиксированных частот

Нестабильность частоты

Выходная мощность передатчика

Коэффициент модуляции, %

Полоса пропускания приемника на

уровне 6 дБ, кГц

Время перестройки, с

Высотность, м

Таблица 2.3

Параметр

По лет - 1 А

Баклан-РН

Диапазон частот, МГц

Дискретность сетки частот,

Число фиксированных

Нестабильность частоты

Выходная мощность

передатчика, Вт

Чувствительность приемника, мкВ

Готовность к работе, мин,

Время перехода в режим передача", при дистанционном управлении, с, не более

Класс излучения

АЗЕ, J3E, A2D

Очевидно, что верность восприятия сообщений в каналах воздушной радиосвязи оказывает существенное влияние на эффективность УВД и на протекание процессов в системе воздушного транспорта в целом. В свою очередь, верность восприятия зависит не только от факторов технического характера, но и от психофизиологического состояния пилота и диспетчера УВД. Известны случаи, когда при хорошо работающих каналах связи сообщения воспринимались неправильно. Это относится в первую очередь к восприятию числовых сообщений.

В периоды пиковой интенсивности воздушного движения речевой канал загружен до предела. При этом становится значительным уровень взаимных помех, ухудшающих качество связи. При этом у пилотов и диспетчеров появляется желание говорить быстрее, что, как правило, ведет к повышению вероятности возникновения ошибок восприятия.

В документах ICAO (Doc.9426/AN/924) указываются важнейшие направления работ по обеспечению высокой надежности наземных систем диспетчерской связи. К их числу относится создание многофункциональных линий авиационной наземной связи, обеспечивающих возможность независимого обмена данными различных классов (например, обмена данными по вопросам взаимодействия органов УВД, метеорологической, аэронавигационной и другой информацией).

Таким образом, к основным направлениям совершенствования средств радиосвязи можно отнести следующие:

переход от однофункциональных к многофункциональным системам связи.

переход от передачи аналоговых сигналов к цифровым;

автоматизация управления сетями связи;

создание сетей с резервными каналами связи для повышения надежности связи;

применение уплотнения передаваемой информации с использованием временного уплотнения каналов связи;

повышение помехоустойчивости каналов связи;

совершенствование оконечной аппаратуры, применение в ней современной элементной базы, методов формирования и обработки сигналов, что способно повысить надежность каналов связи. Для получения устойчивой радиосвязи в сложной помеховой обстановке разработаны методы передачи информации с помощью широкополосных сигналов (ШПС). Используя ШПС возможно вести устойчивую радиосвязь даже в тех случаях, когда уровень принимаемого полезного сигнала ниже уровня помех.

Использование в широкополосных системах связи (ШСС) сигналов сложной формы затрудняет также извлечение информации из сигнала, если не известны данные о его структуре, что представляется в настоящее время весьма актуальным из-за участившихся случаев захвате воздушных судов.

Широкополосные сигналы могут обеспечить высокую достоверность Связи и передачу сообщений с требуемым для современных систем цифровой радиосвязи качеством и оперативностью.

Отличие широкополосной системы от обычной (узкополосной) состоит в использовании сигналов с полосой частот, значительно более широкой, чем полоса передаваемого сообщения, и методов селекции, основанных на применении сигналов различной формы на передающей и согласованных с формой сигналов различной формы фильтров на приемной стороне.

Важно отметить, что широкополосные системы радиосвязи принципиально совместимы с узкополосными, т.е. на одном и том же участке диапазона могут одновременно работать и те, и другие, не оказывая серьезных помех друг другу.

Проведенный анализ позволяет сделать вывод о том, что перспективы для использования широкополосных систем радиосвязи в ГА достаточно хорошие. Поэтому разработка таких систем является актуальной уже в настоящее время.

2.1 Обоснование технических требований к перспективной УКВ радиосвязи

2.1.1 Общие требования

Развитие и совершенствование систем УВД, повышение интенсивности воздушного движения привело к возрастанию объемов передаваемой по каналам УКВ авиационной воздушной радиосвязи информации. Это обстоятельство обусловливает возрастание требований к автоматизации обмена информацией и улучшению информационных и энергетических характеристик каналов связи.

В перспективных системах радиосвязи с применением ШПС, наряду с повышением пропускной способности, предусмотрена защита от естественных помех, криптозащита информации, а также меры по обеспечению электромагнитной совместимости с действующим парком радиосредств. При разработке новых поколений радиостанций произведена унификация многих узлов и блоков на основе модульного подхода к их конструированию, что снижает затраты на техническое обслуживание и ремонт в процессе эксплуатации. Применение новой элементной базы позволяет существенно снизить энергопотребление и массогабаритные характеристики, а также повысить надежность и ремонтопригодность оконечной приемо-передающей аппаратуры каналов радиосвязи.

Рассмотрим основные требования, предъявляемые к перспективным системам авиационной воздушной УКВ радиосвязи.

Достоверность связи . Из-за воздействия помех в канале связи при передаче информации возникают ошибки. Вследствие этого необходимо принимать меры по защите информации от ошибок, что возможно путем применения помехоустойчивого кодирования. Таким образом, можно сделать вывод, что информация, передаваемая по каналу радиосвязи, должна быть защищена помехоустойчивым кодом.

Скорость передачи информации . Система радиосвязи должна обеспечивать высокую достоверность передачи информации и высокую скорость обмена данными между абонентами системы. Эта скорость обусловлена высокими динамическими свойствами ЛА и его высокой скоростью, а также наличием большого количества абонентов в сети связи. Исходя из требований, сформулированных в , скорость передачи информации должна быть не менее 28 кбит/с.

Многостанционный доступ . Одним из требований к перспективным системам связи является многоканальность. Исходя их того, что информация, передаваемая в системе связи, объединена в общий информационный банк, то необходимо организовать доступ абонентов системы к нужной информации с минимальными временными затратами. Удовлетворение данного требования возможно благодаря использованию многоканальной системы радиосвязи с распределенным временным уплотнением. В такой системе связи посылки, принадлежащие одному сообщению, передаются в течение сравнительно большого временного интервала, а между ними находятся посылки других сообщений.

Помехоустойчивость системы . Помехоустойчивость - свойство системы связи выполнять поставленные задачи в условиях воздействия помех искусственного и естественного происхождения. Достижение высокой помехоустойчивости возможно благодаря применению ШПС. Согласно , для подавления системы радиосвязи с ШПС требуемая мощность помехи должна быть в базу раз больше, чем для подавления узкополосной системы связи.

Системы воздушной авиационной радиосвязи УКВ диапазона должны обеспечивать устойчивую и надежную радиосвязь в пределах прямой видимости.

Система радиосвязи должна обладать высокой эксплуатационной надежностью. Это достигается применением на этапе проектирования современной элементной базы и современной технологии на этапе изготовления, а также грамотной эксплуатацией и качественным техническим обслуживанием.

На основе перечисленных требований проведем обоснование основных технических характеристик проектируемой системы связи.

К основным информационным характеристикам проектируемой системы связи относятся:

высокая достоверность передачи информации, при которой вероятность искажения одного элемента в канале передачи данных должна лежать в пределах Р е =10 - 2 …10 - 4 ;

обеспечение высокой скорости передачи информации - до 1200 бит/с;

оптимизация выбора рабочих частот. Наиболее подходящим по условиям электромагнитной совместимости и с учетом требований ICAO является диапазон от 100 до 1000 МГц;

организация информационной сети с многостанционным доступом (минимизация потерь времени на обмен данными);

гибкость по отношению к перестройке организационной структуры системы;

функциональная надежность и отказоустойчивость.

К основным техническим характеристикам проектируемой системы радиосвязи относятся: тип сигнала, используемого в системе; дальность действия; ширина спектра сигнала; диапазон рабочих частот; мощность передающего устройства; чувствительность приемного устройства; количество каналов связи.

2.1.2 Выбор типа сигнала

Из всех известных типов сигналов, применяемых в радиосвязи, наилучшими характеристиками помехозащищенности, скрытности и простоты реализации многостанционного доступа с временным разделением являются ШПС. Помехозащищенность таких сигналов обеспечивается введением в передаваемый сигнал частотной избыточности. Расширение спектра сигнала осуществляется независимо от передаваемого сообщения с помощью модуляции или кодирования.

Частотная избыточность характеризуется базой сигнала. Найдем величину базы сигнала, используемого в проектируемой системе.

Для расширения спектра применяется внутриимпульсное кодирование с фазовой манипуляцией, т.е. посылка длительностью Т может включать в себя16, 32, 64 или 128 элементов длительностью ф э = 200 нс. Известно, что база угнала находится по формуле

В = Т/ ф э,

где: Т - длительность посылки; ф э - длительность элемента посылки.

Так как длительность элемента посылки является фиксированной, то база сигнала будет зависеть от количества элементов в посылке Т и примет значения: В=16; 32; 64; 128.

2.1.3 Обоснование рабочего диапазона частот

Требованиями ICAO для воздушной радиосвязи в диапазоне УКВ выделен частотный диапазон от 118 до 136 МГц. Для проектируемой системы радиосвязи также целесообразно выбрать диапазон УКВ. Это объясняется рядом факторов, к которым относятся: достаточно малые размеры антенн, обеспечивающие достаточную эффективность, малая вероятность искажения символов при передаче цифровой информации (Р е = 10 -3 .10 -5). Такую вероятность ошибки можно достичь благодаря применению кодов, исправляющих ошибки. При этом такая низкая вероятность ошибки при приеме цифровой информации по сравнению с другими диапазонами волн достигается тем, что в УКВ диапазоне действуют только аддитивные помехи и малы космические шумы.

Радиоволны УКВ диапазона распространяются прямолинейно и поэтому отсутствует многолучевость при приеме, а также отсутствуют замирания сигнала при распространении, что также оказывает положительное влияние на помехоустойчивость каналов связи.

Для проектируемой системы радиосвязи предлагается использовать

перспективный диапазон частот 220.400 МГц. Это обусловлено тем, что стандартный диапазон частот достаточно активно используется узкополосными системами связи, а также достаточно широкой полосой частот (несколько мегагерц), занимаемой применяемым типом сигналов.

2.1.4 Дальность связи

Дальность действия проектируемой системы связи характеризуется максимальным расстоянием, на котором обеспечивается получение заданных показателей качества функционирования.

Основной особенностью радиоволн диапазона УКВ является распространение волной поверхностного типа. Такие волны обладают малой способностью к огибанию препятствий, поэтому дальность радиосвязи ограничивается прямой видимостью. Дальность прямой видимости с учетом сферической формы Земли определяется по формуле

(2.1)

где: D - дальность прямой видимости в [км]; h1 и h2 - высоты подъема приемной и передающей антенн в [м].

При работе наземного пункта с самолетной радиостанции дальность действия определяется высотой полета самолета и высотой установки антенны наземной станции. С учетом явления тропосферной рефракции дальность связи в УКВ диапазоне определяется выражением

(2.2)

Расчеты по формуле (3.2) показывают, что дальность прямой видимости в диапазоне УКВ с учетом рефракции составляет при полете ЛА на высотах 100м, 4000м и 12000м соответственно не менее 89 км, 522 км и 903 км.

2.1.5 Количество каналов связи

Количество каналов связи зависит от ширины спектра сигнала:

где: ф э - длительность одного элемента, ф э = 200 не. Тогда получим Дf c = 5 МГц.

Так как для системы отводится диапазон частот 220.400 МГц, то располагаемое количество каналов связи

2.1.6. Помехозащищенность

Помехозащищенность характеризует способность системы связи противостоять воздействию помех. Помехозащищенность включает в себя такие понятия как скрытность и помехоустойчивость. Известно, что помехоустойчивость приема сигналов на фоне широкополосной помехи (Дf n >Дf c) типа белый гауссовский шум определяется только отношением энергии сигнала Е с к спектральной плотности шума N

q 0 = 2E/N = 2P c T/N, (2.3)

и не зависит от вида сигнала. Поэтому при известной спектральной плотности помех помехоустойчивость оптимального приема ШПС к широкополосным помехам равна помехозащищенности оптимального приема узкополосных сигналов в этих условиях.

Если ширина спектра помехи не превышает ширину спектра сигнала, то применение ШПС обеспечивает увеличение отношения сигнал/помеха относительно узкополосных сигналов

(2.4)

Таким образом, отношение сигнал/помеха в ШСС улучшается пропорционально базе сигнала.

Помехоустойчивость ШСС определяется соотношением, связывающим отношение сигнал/помеха на выходе приемника q 2 с отношением сигнал/помеха на его входе р 2

(2.5)

где - отношение мощности ШПС к мощности помехи; q 2 = 2E/N п - отношение энергии ШПС Е к спектральной плотности мощности помехи N п в полосе ШПС, т.е. Е = Р с Т, N п = Р п /Дf c .

Из данного соотношения следует, что прием ШПС сопровождается усилением сигнала в 2В раз.

Скрытность системы связи определяет ее способность противостоять обнаружению и измерению параметров сигнала. Если известно, что в данном диапазоне частот может работать система связи, но параметры ее неизвестны, то в этом случае можно говорить об энергетической скрытности системы связи, так как ее обнаружение возможно только с помощью анализа спектра. Скрытность ШСС связана с уменьшением спектральной плотности сигнала в результате увеличения его базы, т.е.

(2.6)

т.е. в В раз меньше, чем у узкополосного сигнала при равных мощностях и скорости передачи информации. Отношение спектральной плотности мощности сигнала N c к спектральной плотности мощности входных шумов N приемника, обнаруживающего сигнал, составляет

(2.7)

т.е. в В раз меньше, чем у узкополосных сигналов. Поэтому в точке приема при неизвестной структуре ШПС вероятность его обнаружения на фоне шума чрезвычайно низка . Таким образом, чем шире спектр ШПС и больше его база, тем выше энергетическая и параметрическая скрытность системы связи.

2.1.7 Электромагнитная совместимость

ШПС обеспечивает хорошую ЭМС с узкополосными системами связи. Для ШПС спектральная плотность мощности определяется выражением

(2.8)

для узкополосного сигнала

(2.9)

Помехоустойчивость системы связи с ШПС определяется соотношением (2.5), в котором

(2.10)

Если узкополосная система связи постоянно занимает определенный интервал частот, то ее спектр можно подавить, используя режекторный фильтр. Таким образом, воздействие узкополосной системы связи на широкополосную незначительно и определяется выражением

N шпс Дf y = Р шпс Дf y /Дf c . (2.11)

Исходя из этого, отношение сигнал/помеха на выходе узкополосного приемника будет определяться выражением (2.5), в котором

, (2.12)

B = Дf c /Дf y . (2.13)

Таким образом, чем больше отношение Af c /Af y , тем лучше фильтрация ШПС в узкополосной системе связи, т.е. чем больше база ШПС, тем выше ЭМС широкополосной и узкополосной систем связи.

Следовательно, системы связи с ШПС обладают хорошей ЭМС с узкополосными системами связи. Они обеспечивают высокую помехоустойчивость относительно мощных помех, скрытность, адресность, работоспособность в общей полосе частот, хорошую ЭМС с другими радиотехническими системами.

2.1.8 Основные типы ШПС

Известно большое число различных ШПС. В настоящее время в радиосвязи применяются:

частотно-модулированные сигналы (ЧМС);

многочастотные сигналы (МЧС);

фазоманипулированные сигналы (ФМС);

дискретные частотные сигналы (ДЧС);

дискретные составные частотные сигналы (ДСЧ).

Из перечисленных ШПС наиболее перспективными для систем связи являются ФМС. Это объясняется сравнительной простотой реализации устройств формирования и демодуляции ШПС на элементах цифровой микроэлектронной техники, возможностью создания большого числа сигналов для одной и той же величины последовательности, хорошими корреляционными свойствами сигналов в частотно-временной области.

ФМС представляют собой последовательность радиоимпульсов, начальные фазы которых изменяются по заданному закону. В большинстве случаев ФМС состоит из радиоимпульсов с двумя значениями начальных фаз О и р.

Для реализации фазовой манипуляции сигналов используются различные кодовые последовательности (коды Баркера, Голда и М-последовательности - последовательности максимальной длины).

Для проектируемой системы радиосвязи в качестве модулирующего сигнала выберем М-последовательность, обладающую следующими достоинствами :

М-последовательность является последовательностью с периодом, состоящим из n символов (импульсов);

боковые лепестки периодической автокорреляционной функции сигналов, образованных М-последовательностью, равны 1/n;

М-последовательность в общем случае состоит из нескольких видов импульсов. Импульсы различного вида встречаются в периоде примерно одинаковое количество раз, т.е. все импульсы распределены в периоде равномерно. Вследствие этого М-последовательности называют псевдослучайными;

М последовательности легко фильтруются с помощью линейных переключаемых схем на основе сдвигающих регистров;

автокорреляционная функция М-последовательности, под которой понимается непериодическая последовательность длиной L за период Т, имеет величину боковых лепестков, близкую к. Поэтому с ростом Т величина боковых пиков уменьшается.

М-последовательностью называется периодическая последовательность символов (элементов) d 1 d 2 ,., d i , удовлетворяющая следующему правилу:

(2.14)

где сложение производится по модулю 2. Это означает, что при возможных значениях а, = 0 или 1 символы di,. dj могут принимать значения 0 или 1.

Важным параметром М-последовательности является параметр n, определяющий число ячеек регистра сдвига, с помощью которого формируется сама последовательность. Такой регистр с заданными определенным образом обратными связями образует неповторяющуюся комбинацию из L =2 n - 1 символов. Эта неповторяющаяся комбинация является максимально возможной.

Для образования М-последовательности задаются произвольной начальной комбинацией из п символов d 1 . d n , которую называют начальным блоком. Используя правило определяются все остальные элементы последовательности d n +1 ,. dj. Изменение начального блока приводит к циклическому сдвигу последовательности.

Таким образом, ШПС формируется путем фазовой манипуляции несущей частоты кодовой М-последовательностью.

2.1.9 Чувствительность приемного устройства

Чувствительность приемника оказывает непосредственное влияние на дальность радиосвязи. Чувствительность приемников радиостанций систем связи УКВ диапазона находится в пределах 2,5.3 мкВ и ограничена собственными шумами радиоэлементов. Учитывая, что существенно снизить собственные шумы без значительного увеличения затрат не представляется возможным, чувствительность приемных устройств проектируемой системы радиосвязи должна быть не хуже 2 мкВ (с учетом применения современной элементной базы, имеющей пониженный уровень тепловых шумов).

2.2 Обоснование структурной схемы проектируемой системы связи

Проектируемая система связи состоит из аппаратуры, находящейся на наземном диспетчерском пункте, линии связи, под которой следует понимать среду распространения радиосигнала, и аппаратуры, устанавливаемой на борту ЛА. В состав аппаратуры на диспетчерском пункте и на борту ЛА должны входить приемо-передающие устройства - терминалы. Основное отличие терминала от обычного приемо-передающего устройства состоит в наличии в его составе специализированных вычислительных устройств - процессоров, реализующих функции формирования, передачи, приема и обработки широкополосных сигналов. При этом состав и структура наземного и бортового терминалов проектируемой системы связи практически одинакова. При разработке структурной схемы терминала следует учесть его многофункциональность, необходимость точной синхронизации с шкалой единого времени системы (для обеспечения своевременного выхода абонентов на связь), а также необходимость осуществления функционального контроля всего терминала.

Таким образом, структурная схема терминала приемопередающего устройства примет вид, представленный на рис.4.1 В состав терминала входят следующие устройства:

усилитель мощности (УМ);

приемопередатчик;

сигнальный процессор (СП);

канальный процессор (КП);

генератор опорной псевдослучайной последовательности (ГОПСП);

магистральная шина (МШ);

блок контроля (БК);

высокочастотный переключатель (ВЧП);

синтезатор частоты (СЧ);

синхронизатор (С);

блок единого времени и частоты (БЕВЧ);

терминальный процессор (ТП).

Кроме этого, для изменения и приспособления структуры и основных параметров системы связи к изменяющимся условиям функционирования и помеховой обстановки, в состав терминала входит адаптивный процессор (АДП).

Приемопередатчик обеспечивает усиление сигнала до уровня, необходимого для передачи сообщений, приема сообщений и их усиления до уровня, необходимого для работы сигнального процессора.

Сигнальный процессор имеет в своем составе модем, кодек, модуль управления (МУ).

Подобные документы

    Перспективы мобильности беспроводных сетей связи. Диапазон частот радиосвязи. Возможности и ограничения телевизионных каналов. Расчет принимаемого антенной сигнала. Многоканальные системы радиосвязи. Структурные схемы радиопередатчика и приемника.

    презентация , добавлен 20.10.2014

    Этапы разработки структурной схемы системы оперативной связи гарнизона пожарной охраны. Оптимизация сети специальной связи по линиям 01. Особенности определения высоты подъема антенн стационарных радиостанций, обеспечивающих заданную дальность радиосвязи.

    контрольная работа , добавлен 16.07.2012

    Описание используемых плат расширение/модулей. Схема узлов связи и их лицевой панели шасси. Функциональная схема узла связи 1, 2, 3 и 4. Подбор оптического кабеля и его обоснование. Резервирование частот/волокон. Спецификация узлов, их главные элементы.

    курсовая работа , добавлен 27.04.2014

    Разработка электрической принципиальной и функциональной схемы генератора. Обоснование выбора схем блока вычитания и преобразователя кодов. Функциональная схема генератора последовательности двоичных слов. Расчет конденсаторов развязки в цепи питания.

    курсовая работа , добавлен 14.09.2011

    Виды и цели авиационной электросвязи гражданской авиации Российской Федерации, показатели ее надежности. Резервирование средств радиотехнического обеспечения полетов и авиационной электросвязи. Оценка качества передачи речевых сообщений по каналам связи.

    реферат , добавлен 14.06.2011

    Разработка канала радиосвязи метрового диапазона, его передающей и приемной части. Предварительный расчет параметров передающей и приемной частей каналов. Функциональная схема радиоприемной его части, расчет наземного затухания напряженности поля.

    контрольная работа , добавлен 03.03.2014

    Анализ оснащенности участка проектирования системами связи. Требования к стандартам радиосвязи. Преимущества GSM-R, принципы построения, организация каналов доступа, особенности базовой структуры. Энергетический расчет проектируемой системы радиосвязи.

    дипломная работа , добавлен 24.06.2011

    Выбор и обоснование перечня технических средств связи гарнизона. Расчёт основных характеристик системы. Пропускная способность сети спецсвязи "01". Высота подъёма антенн стационарных радиостанций. Максимальная дальность связи с подвижными объектами.

    курсовая работа , добавлен 20.07.2014

    Характеристики и параметры сигналов и каналов связи. Принципы преобразования сигналов в цифровую форму и требования к аналогово-цифровому преобразователю. Квантование случайного сигнала. Согласование источника информации с непрерывным каналом связи.

    курсовая работа , добавлен 06.12.2015

    Организация поездной радиосвязи. Расчет дальности действия радиосвязи на перегоне и на станции. Радиоаппаратура и диапазон частот. Выбор и анализ направляющих линий. Организация станционной радиосвязи. Организация громкоговорящей связи на станции.

РАЗМЕРНЫЙ АНАЛИЗ И РАЗМЕРНЫЕ ЦЕПИ

Общие сведения о размерном анализе. Основные определения.

Расчёты допусков на размеры деталей посадок (вал - отверстия) относительно просты. Они позволяют решать многие задачи теории точности и взаимозаменяемости в технике. Однако на практике в машинах и механизмах, приборах и других технических устройствах взаимное расположение осей и поверхностей деталей, соединяемых в изделиях, зависит от большего числа (три и более) сопрягаемых размеров. Одним из средств определения оптимальных допусков на все конструктивно и (или) функционально связанные размеры в изделии является размерный анализ , который выполняется на основании расчётов размерных цепей . Взаимосвязь размеров и их допустимых отклонений, регламентирующая расположение поверхностей, и осей как одной детали, так и нескольких деталей, в узле или изделий, называется размерной связью деталей .

Размерной цепью называют совокупность размеров, образующихзамкнутый контур , и непосредственно участвующих в решении поставленной задачи. (ГОСТ 16319-80)

С помощью расчётов размерных цепей и размерного анализа решаются следующие задачи:

Устанавливаются ответственные размеры и параметры деталей и узлов, оказывающие влияние на эксплуатационные показатели машины, прибора;

Уточняются номинальные размеры и их предельные отклонения;

Рассчитываются и (или) уточняются нормы точности на машины, приборы и их узлы и детали;

Обосновываются технологические и измерительные базы;

Проводятся метрологические расчёты, определяющие допустимые величины погрешностей (базирования деталей при измерении измерительных средств и методов измерения);

Выбираются измерительные средства для контрольных операций в процессах изготовления, испытания, контроля качества изделий, деталей и др.

Задачи размерного анализа решаются на основе теории размерных цепей. Расчёт размерных цепей является необходимым этапом конструирования машин и приборов.

Основные признаки размерной цепи:

В размерную цепь могут входить только те размеры, которые, будучи функционально и (или) конструкторски связанными, позволяют решить конструкторские, технологические, измерительные или другие, выше названные задачи;

Размеры, входящие в размерную цепь всегда должны образовывать замкнутый контур.

Размеры, входящи е в размерную цепь, называются звеньями.

Звено размерной цепи, являющееся исходным при постановке задачи (например, при конструировании), или получающееся последним в результате решения поставленной задачи (например, технологическая), называется замыкающим .

Замыкающее звено в размерной цепи всегда одно. Остальные звенья размерной цепи (любое число (2 или более)) называются составляющими. Составляющие звенья бывает увеличивающие и уменьшающие.

Увеличивающим называют составляющее звено, с увеличением которого увеличивается замыкающее звено.

Уменьшающим н азывают составляющее звено, с увеличением которого уменьшается замыкающее звено.

Звенья размерной цепи на схеме обозначают прописной (заглавной) буквой с порядковыми цифровыми индексами (1,2,..,n) для составных звеньев и треугольным индексом (А) для замыкающего звена.

Например, размерная цепь А,

Для выделения увеличивающих и уменьшающих составляющих звеньев их помечают стрелкой, размещаемой над буквой:

Стрелка направленная вправо для увеличивающих звеньев A 1, A 2 ;

Стрелка направленная влево для уменьшающих звеньев: B 1, B 2 .

При построении схемы размерной цепи анализируется чертёж изделия

(например, чертёж детали (рисунок 3.1, а); изделия в сборке (рисунок 3.1, б)).

1. Определить поверхности детали, назначенные конструкторскими и измерительными базами;

2. Установить размеры детали, которые могут быть измерены прямыми измерениями непосредственно от конструкторской базы;

3. Установить размеры детали, для оценки точности которых потребуется построение и расчёт размерных цепей, при этом конструкторская база сохраняется;

4. Установить размеры детали, для оценки точности которых, целесообразно назначить новую базовую поверхность (не совпадающую с конструкторской базой). Из этих размеров требуется выделить размеры, которые могут быть измерены прямыми измерениями от новой базы, и размеры, для оценки точности которых потребуется построения и расчёты размерных цепей.

Суть размерного анализа спроектированного технологического про-цесса состоит в решении обратных задач для технологических размерных цепей.

Размерный анализ позволяет оценить качество технологического процесса, в частности, определить, будет ли он обеспечивать выполнение конструкторских размеров, непосредственно не выдерживаемых при обра-ботке заготовки, найти предельные значения припусков на обработку и оценить их достаточность для обеспечения требуемого качества поверхно-стного слоя обрабатываемых поверхностей и (или) возможность удаления припусков без перегрузки режущего инструмента.

Исходными данными для размерного анализа являются чертеж дета-ли, чертеж исходной заготовки и технологический процесс изготовления детали.

Министерство образования и науки Российской Федерации

Тольяттинский государственный университет

Кафедра «Технология машиностроения»

КУРСОВАЯ РАБОТА

по дисциплине

«Технология машиностроения»

на тему

«Размерный анализ технологических процессов изготовления вала-шестерни»

Выполнил:

Преподаватель: Михайлов А.В.

Тольятти, 2005

УДК 621.965.015.22

Аннотация

Зарипов М.Р. размерный анализ технологического процесса изготовления детали вал-шестерня.

К.р. – Тольятти.: ТГУ, 2005.

Выполнен размерный анализ технологического процесса изготовления детали вал-шестерня в продольном и радиальном направлении. Рассчитаны припуски и операционные размеры. Проведено сравнение результатов операционных диаметральных размеров, полученных расчетно-аналитическим способом и методом размерного анализа с использованием операционных размерных цепей.

Расчетно-пояснительная записка на 23стр.

Графическая часть – 4 чертежей.

1. Чертеж детали – А3.

2. Размерная схема в осевом направлении – А2.

3. Размерная схема в диаметральном направлении – А2.

4. Размерная схема в диаметральном направлении продолжение – А3.


1. Технологический маршрут и план изготовления детали

1.1. Технологический маршрут и его обоснование

1.2. План изготовления детали

1.3. Обоснование выбора технологических баз, классификация технологических баз

1.4. Обоснование простановки операционных размеров

1.5. Назначение операционных требований

2. Размерный анализ технологического процесса в осевом направлении

2.1. Размерные цепи и их уравнения

2.2. Проверка условий точности изготовления детали

2.3. Расчет припусков продольных размеров

2.4. Расчет операционных размеров

3. Размерный анализ технологического процесса в диаметральном направлении

3.1. Радиальные размерные цепи и их уравнения

3.2. Проверка условий точности изготовления детали

3.3. Расчет припусков радиальных размеров

3.4. Расчет операционных диаметральных размеров

4. Сравнительный анализ результатов расчетов операционных размеров

4.1. Расчет диаметральных размеров расчетно-аналитическим методом

4.2. Сравнение результатов расчета

Литература

Приложения


1. Технологический маршрут и план изготовления детали

1.1. Технологический маршрут и его обоснование

В данном разделе опишем основные положения, использованные при формировании технологического маршрута детали.

Тип производства – среднесерийный.

Способ получения заготовки – штамповка на ГКШП.

При разработке технологического маршрута используем следующие положения:

· Обработку разделяем на черновую и чистовую, повышая производительность (снятие больших припусков на черновых операциях) и обеспечивая заданную точность (обработка на чистовых операциях)

· Черновая обработка связана со снятием больших припусков, что ведет к износу станка и снижению его точности, поэтому черновую и чистовую обработку будем вести на разных операциях с применением различного оборудования

· Для обеспечения требуемой твердости детали введем ТО (закалка и высокий отпуск, шейки под подшипники - цементация)

· Лезвийную обработку, нарезку зубьев и шпоночного паза произведем перед ТО, а после ТО абразивная обработка

· Для обеспечения требуемой точности создаем искусственные технологические базы, используемые на последующих операциях – центровые отверстия

· Более точные поверхности будем обрабатывать в конце ТП

· Для обеспечения точности размеров детали будем использовать специализированные и универсальные станки, станки с ЧПУ, нормализованные и специальные режущие инструменты и приспособления

Для простоты составления плана изготовления закодируем поверхности рис.1.1 и размеры детали и приведем сведения о требуемой точности размеров:

ТА2 = 0,039(–0,039)

Т2В = 0,1(+0,1)

Т2Г = 0,74(+0,74)

Т2Д = 0,74(+0,74)

ТЖ = 1,15(–1,15)

ТИ = 0,43(–0,43)

ТК = 0,22(–0,22)

ТЛ = 0,43(–0,43)

ТМ = 0,52(–0,52)

ТП = 0,2(-0,2)

Технологический маршрут оформим в виде таблицы:

Таблица 1.1

Технологический маршрут изготовления детали

№ операции

Наименование

операции

Оборудование (тип, модель) Содержание операции
000 Заготовительная ГКШП Штамповать заготовку
010 Фрезерно-центровальная

Фрезерно-центровальный

Фрезеровать торцы 1,4; сверлить центровальные отверстия
020 Токарная Токарный п/а 1719

Точить поверхности

2, 5, 6, 7; 8, 3

030 Токарная с ЧПУ Токарный с ЧПУ 1719ф3 Точить поверхности 2, 5, 6; 3, 8
040 Шпоночно-фрезерная Шпоночно-фрезерный 6Д91 Фрезеровать паз 9, 10
050 Зубофрезерная Зубофрезерный 5В370 Фрезеровать зубья 11, 12
060 Зубофасочная Зубофасочный СТ 1481 Снять фаску с зубьев
070 Зубошевинго­вальная Зубошевинговальный 5701 Шевинговать зубья 12
075 ТО Закалка, высокий отпуск, правка, цементация
080 Центродоводочная Центродоводочный 3922 Зачистиь центровочные отверстия
090 Круглошлифовальная Круглошлифовальный 3М163ф2Н1В Шлифовать поверхности 5, 6, 8
100 Торцекругло­шлифовальная Торцекруглошлифовальный 3М166ф2Н1В Шлифовать поверхности 2, 6; 3, 8
110 Зубошлифовальная Зубошлифовальный 5А830

Шлифовать зубья

1.2. План изготовления детали

Приведем в виде таблицы 1.2 план изготовления детали, оформленный в соответствие с требованиями :


Таблица 1.2

План изготовления детали вал-шестерня






1.3. Обоснование выбора технологических баз, классификация технологических баз

На фрезерно-центровальной операции в качестве черновых технологических баз выбираем общую ось шеек 6 и 8, и торец 3 – как будущими основными конструкторскими базами.

На черновом точении за технологические базы принимаем полученную на предыдущей операции ось 13 (используем центры) и обработанные на предыдущей операции торцы 1 и 4.

При чистовом точении используем в качестве технологических баз ось 13, а опорная точка лежит на поверхности центровых отверстий – используем принцип постоянства баз и исключаем погрешность неперпендикулярности, как составляющую погрешности выполнения осевого размера.

Таблица 1.3

Технологические базы

№ операции № опорных точек Наименование базы Характер проявления Реализация № обрабатывае­мых поверхностей Операционные размеры Единство баз Постоянство баз
Явная скрытая Естественная Искусственная Станочные приспособления
1 2 3 4 5 6 7 8 9 10 11 12
010
020-А

Жесткий и плавающий центры,

поводковый патрон

020-Б
030-А
030-Б
040
050
070
090-А
090-Б
100-А
100-Б
110

На зубообрабатывающих операциях используем ось 13 и опорную точку на центровом отверстии, соблюдая принцип постоянства баз (относительно шеек подшипников), ибо, являясь исполнительной поверхностью, зубчатый венец должен быть точно выполнен относительно шеек подшипников.

Для фрезерования шпоночного паза в качестве технологических баз используем ось 13 и торец 2.

В сводной таблице приводим классификацию технологических баз, указываем их целевую принадлежность, выполнение правила единства и постоянства баз.

1.4. Обоснование простановки операционных размеров

Способ простановки размеров зависит в первую очередь от метода достижения точности. Так как размерный анализ имеет большую трудоемкость выполнения, то применять его целесообразно при использовании метода достижения точности размеров с помощью настроенного оборудования.

Особую важность представляет способ простановки продольных размеров (осевых для тел вращения).

На черновой токарной операции мы можем применить схемы простановки размеров «а» и «б» рис.4.1.

На чистовой токарной и шлифовальных операциях применяем схему «г» рис.4.1.

1.5. Назначение операционных технических требований

Операционные технические требования назначаем по методике . Технические требования на изготовление заготовки (допуски на размеры, смещение штампа) назначаем по ГОСТ 7505-89. Допуски на размеры определяем по приложению 1 , шероховатость – по приложению 4 , величины пространственных отклонений (отклонения от соосности и перпендикулярности) – по приложению 2 .

Для заготовки отклонения от соосности определим по методике .

Определим средний диаметр вала

где d i – диаметр i-ой ступени вала;

l i – длина i-ой ступени вала;

l – общая длина вала.

d ср =38,5мм. По приложению 5 определим р к – удельная величина изогнутости. Величины изогнутости оси вала для различных участков определим по следующей формуле:

, (1.2)

где L i – расстояние наиболее удаленной точки i-ой поверхности до измерительной базы;

L – длина детали, мм;

Δ max =0,5·р к ·L – максимальный прогиб оси вала в результате коробления;

– радиус кривизны детали, мм; (1.3)

Аналогично рассчитываем отклонения от соосности при термообработке. Данные для их определения также приведены в приложении 5.

После расчетов получаем


2. Размерный анализ технологического процесса в осевом направлении

2.1. Размерные цепи и их уравнения

Составим уравнения размерных цепей в виде уравнений номиналов.

2.2.

Проверку условий точности выполняем, чтоб убедиться в обеспечении требуемой точности размеров. Условие точности ТА черт ≥ω[А],

где ТА черт – допуск по чертежу размера;

ω[А] – погрешность этого же параметра возникающая в ходе выполнения технологического процесса.

Погрешность замыкающего звена найдем по уравнению (2.1)

Из расчетов видно, что погрешность размер К больше допуска. А это значит, что мы должны корректировать план изготовления.

Для обеспечения точности размера [К]:

на 100-ой операции обработаем с одного установа поверхности 2 и 3, тем самым уберем из размерной цепи размера [К] звенья С 10 , Ж 10 и Р 10 , «заменив» их на звено Ч 100 (ωЧ=0,10).

После внесения в план изготовления данных коррективов, получаем следующие уравнения размерных цепей, погрешность которых равна:


В итоге получаем 100% качество

2.3. Расчет припусков продольных размеров

Расчет припусков продольных размеров будем вести в следующем порядке.

Напишем уравнения размерных цепей, замыкающим размером которых будут припуски. Посчитаем минимальный припуск на обработку по формуле

где - суммарная погрешность пространственных отклонений поверхности на предыдущем переходе;

Высоты неровностей и дефектный слой, образовавшиеся на поверхности при предыдущей обработке.

Рассчитаем величины колебаний операционных припусков по уравнениям погрешностей замыкающих звеньев-припусков

(2.1)

(2.2)

Расчет ведут по формуле (2.2) если количество составляющих звеньев припуска больше четырех.

Находим значения максимальных и средних припусков по соответствующим формулам

, (2.3)

(2.4)

результаты занесем в таблицу 2.1

2.4. Расчет операционных размеров

Определим величины номинальных и предельных значений операционных размеров в осевом направлении по методу средних значений

Исходя из уравнений, составленных в пунктах 2.2 и 2.3, найдем средние значения операционных размеров


запишем значения в удобной для производства форме


3. Размерный анализ технологического процесса в диаметральном направлении

3.1. Радиальные размерные цепи и их уравнения

Составим уравнения размерных цепей с замыкающими звеньями-припусками, т.к. почти все размеры в радиальном направлении получаются явно (см. п.3.2)

3.2. Проверка условий точности изготовления детали

Получаем 100% качество.


3.3. Расчет припусков радиальных размеров

Расчет припусков радиальных размеров будем вести аналогично расчету припусков продольных размеров, но расчет минимальных припусков будем вести по следующей формуле

(3.1)

Результаты заносим в таблицу 3.1

3.4. Расчет операционных диаметральных размеров

Определим величины номинальных и предельных значений операционных размеров в радиальном направлении по методу координат средин полей допусков.

Исходя из уравнений, составленных в пунктах 3.1 и 3.2, найдем средние значения операционных размеров


Определим координату средин полей допусков искомых звеньев по формуле

Сложив полученные величины с половиной допуска, запишем значения в удобной для производства форме


4. Сравнительный анализ результатов расчетов операционных размеров

4.1. Расчет диаметральных размеров расчетно-аналитическим методом

Рассчитаем припуски для поверхности 8 по методике В.М. Кована .

Полученные результаты заносим в таблицу 4.1

4.2. Сравнение результатов расчета

Посчитаем общие припуски по формулам

(4.2)

Посчитаем номинальный припуск для вала

(4.3)

Результаты расчетов номинальных припусков сводим в таблицу 4.2

Таблица 4.2

Сравнение общих припусков

Найдем данные по изменению припусков

Мы получили разницу припусков в 86%, вследствие неучета при расчете методом Кована следующих моментов: особенностей простановки размеров на операции, погрешности выполняемых размеров, влияющих на величину погрешности припуска и др.

Литература

1. Размерный анализ технологических процессов изготовления деталей машин: Методические указания к выполнению курсовой работы по дисциплине «Теория Технологии»/ Михайлов А.В. – Тольятти,: ТолПИ, 2001. 34с.

2. Размерный анализ технологических процессов/ В.В. Матвеев, М. М. Тверской, Ф. И. Бойков и др. – М.: Машиностроение, 1982. – 264 с.

3. Специальные металлорежущие станки общемашиностроительного применения: Справочник/ В.Б. Дьячков, Н.Ф. Кабатов, М.У. Носинов. – М.: Машиностроение. 1983. – 288 с., ил.

4. Допуски и посадки. Справочник. В 2-х ч./ В. Д. Мягков, М. А. Палей, А. Б. Романов, В.А. Брагинский. – 6-е изд., перераб. и доп. – Л.: Машиностроение, Ленингр. отд-ние, 1983. Ч. 2. 448 с., ил.

5. Михайлов А.В. План изготовления детали: Методические указания к выполнению курсовых и дипломных проектов. – Тольятти: ТолПИ, 1994. – 22с.

6. Михайлов А.В. Базирование и технологические базы: Методические указания к выполнению курсовых и дипломных проектов. – Тольятти: ТолПИ, 1994. – 30с.

7. Справочник технолога-машиностроителя. Т.1/под. ред А.Г. Косиловой и Р.К. Мещерякова. – М.:Машиностроение, 1985. – 656с.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows