Postgresql лицензия. Отличия Postgres Pro Standard от PostgreSQL. Когда стоит использовать PostgreSQL

Postgresql лицензия. Отличия Postgres Pro Standard от PostgreSQL. Когда стоит использовать PostgreSQL

  • Перевод

Сегодня давайте поговорим о преимуществах Postgres перед другими системами с открытым кодом. Эту тему мы обязательно раскроем более подробно на PG Day"16 Russia, до которой осталось всего два месяца.

Возможно, вы спрашиваете себя: «Почему PostgreSQL?» Ведь есть и другие варианты реляционных баз данных с открытым исходным кодом (в рамках этой статьи мы рассматривали MySQL, MariaDB и Firebird), так что же Постгрес может предложить такого, чего нет у них? В слогане PostgreSQL заявляется, что это «Самая продвинутая база данных с открытым исходным кодом в мире». Мы приведем несколько причин, почему Постгрес делает такие заявления.

В первой части этой серии мы поговорим о хранении данных - модели, структуре, типах и ограничениях размера. А во второй части больше сфокусируемся на выборке и манипуляциях с данными.

Модель данных

PostgreSQL не просто реляционная, а объектно-реляционная СУБД. Это даёт ему некоторые преимущества над другими SQL базами данных с открытым исходным кодом, такими как MySQL, MariaDB и Firebird.

Фундаментальная характеристика объектно-реляционной базы данных - это поддержка пользовательских объектов и их поведения, включая типы данных, функции, операции, домены и индексы. Это делает Постгрес невероятно гибким и надежным. Среди прочего, он умеет создавать, хранить и извлекать сложные структуры данных. В некоторых примерах ниже вы увидите вложенные и составные конструкции, которые не поддерживаются стандартными РСУБД.

Структуры и типы данных

Существует обширный список типов данных, которые поддерживает Постгрес. Кроме числовых, с плавающей точкой, текстовых, булевых и других ожидаемых типов данных (а также множества их вариаций), PostgreSQL может похвастаться поддержкой uuid, денежного, перечисляемого, геометрического, бинарного типов, сетевых адресов, битовых строк, текстового поиска, xml, json, массивов, композитных типов и диапазонов, а также некоторых внутренних типов для идентификации объектов и местоположения логов. Справедливости ради стоит сказать, что MySQL, MariaDB и Firebird тоже имеют некоторые из этих типов данных, но только Постгрес поддерживает их все.

Давайте рассмотрим подробнее некоторые из них:

Сетевые адреса
PostgreSQL обеспечивает хранение разных типов сетевых адресов. Тип данных CIDR (бесклассовая маршрутизация интернет домена, Classless Internet Domain Routing) следует соглашению для сетевых адресов IPv4 и IPv6. Вот несколько примеров:
  • 192.168.100.128/25
  • 10.1.2.3/32
  • 2001:4f8:3:ba:2e0:81ff:fe22:d1f1/128
  • ::ffff:1.2.3.0/128
Также для хранения сетевых адресов доступен тип данных INET, используемый для IPv4 и IPv6 хостов, где подсети являются необязательными. Тип данных MACADDR может использоваться для хранения MAC-адресов для идентификации оборудования, таких как 08-00-2b-01-02-03.

У MySQL и MariaDB тоже есть INET функции для конвертации сетевых адресов, но они не предоставляют типы данных для внутреннего хранения сетевых адресов. У Firebird тоже нет типов для хранения сетевых адресов.

Многомерные массивы
Поскольку Постгрес - это объектно-реляционная база данных, массивы значений могут храниться для большинства существующих типов данных. Сделать это можно путём добавления квадратных скобок к спецификации типа данных для столбца или с помощью выражения ARRAY. Размер массива может быть задан, но это необязательно. Давайте рассмотрим меню праздничного пикника для демонстрации использования массивов:

Создаем таблицу, у которой значения являются массивами CREATE TABLE holiday_picnic (holiday varchar(50) -- строковое значение sandwich text, -- массив side text , -- многомерный массив dessert text ARRAY, -- массив beverage text ARRAY -- массив из 4-х элементов); -- вставляем значения массивов в таблицу INSERT INTO holiday_picnic VALUES ("Labor Day", "{"roast beef","veggie","turkey"}", "{ {"potato salad","green salad","macaroni salad"}, {"chips","crackers"} }", "{"fruit cocktail","berry pie","ice cream"}", "{"soda","juice","beer","water"}");
MySQL, MariaDB, и Firebird так не умеют. Чтобы хранить такие массивы значений в традиционных реляционных базах данных, придется использовать обходной путь и создавать отдельную таблицу со строками для каждого из значений массива.

Геометрические данные
Геоданные быстро становятся основным требованием для многих приложений. PostgreSQL уже давно поддерживает множество геометрических типов данных, таких как точки, линии, круги и многоугольники. Один из этих типов – PATH, он состоит из множества последовательно расположенных точек и может быть открытым (начальная и конечная точки не связаны) или закрытым (начальная и конечная точки связаны). Давайте рассмотрим в качестве примера туристическую тропу. В данном случае туристическая тропа - это петля, поэтому начальная и конечная точки связаны, и, значит, мой путь является закрытым. Круглые скобки вокруг набора координат указывают на закрытый путь, а квадратные - на открытый.

Создаем таблицу для хранения троп CREATE TABLE trails (trail_name varchar(250), trail_path path); -- вставляем тропу в таблицу, -- для которой маршрут определяется координатами в формате широта-долгота INSERT INTO trails VALUES ("Dool Trail - Creeping Forest Trail Loop", ((37.172,-122.22261666667), (37.171616666667,-122.22385), (37.1735,-122.2236), (37.175416666667,-122.223), (37.1758,-122.22378333333), (37.179466666667,-122.22866666667), (37.18395,-122.22675), (37.180783333333,-122.22466666667), (37.176116666667,-122.2222), (37.1753,-122.22293333333), (37.173116666667,-122.22281666667)));
Расширение PostGIS для PostgreSQL дополняет существующие свойства геометрических данных вспомогательными пространственными типами, функциями, операторами и индексами. Оно обеспечивает поддержку местоположения и поддерживает как растровые, так и векторные данные. Оно также обеспечивает совместимость с множеством сторонних геопространственных инструментов (защищённых авторским правом и с открытым исходным кодом) для отображения, отрисовки и работы с данными.

Заметьте, что в MySQL 5.7.8 и в MariaDB, начиная с версии 5.3.3, были добавлены расширения типов данных для поддержки стандарта географической информации OpenGIS. Эта версия MySQL и последующие версии MariaDB предлагают хранение типов данных, аналогичное штатным геоданным Постгреса. Тем не менее, в MySQL и MariaDB значения данных сначала должны быть сконвертированы в геометрический формат простыми командами перед тем, как будут вставлены в таблицу. Firebird на данный момент не поддерживает геометрические типы данных.

Поддержка JSON
Поддержка JSON в PostgreSQL позволяет вам перейти к хранению schema-less данных в SQL базе данных. Это может быть полезно, когда структура данных требует определённой гибкости: например, если в процессе разработки структура всё ещё меняется или неизвестно, какие поля будет содержать объект данных.

Тип данных JSON обеспечивает проверку корректности JSON, который позволяет использовать специализированные JSON операторы и функции, встроенные в Постгрес для выполнения запросов и манипулирования данными. Также доступен тип JSONB - двоичная разновидность формата JSON, у которой пробелы удаляются, сортировка объектов не сохраняется, вместо этого они хранятся наиболее оптимальным образом, и сохраняется только последнее значение для ключей-дубликатов. JSONB обычно является предпочтительным форматом, поскольку требует меньше места для объектов, может быть проиндексирован и обрабатывается быстрее, так как не требует повторного синтаксического анализа.

В MySQL 5.7.8 и MariaDB 10.0.1 была добавлена поддержка встроенных объектов JSON. Но, хотя существует множество функций и операторов для JSON, которые теперь доступны в этих базах данных, они не индексируются так, как JSONB в PostgreSQL. Firebird пока что не присоединился к тренду и поддерживает объекты JSON только в виде текста.

Создание нового типа
Если вдруг так случится, что обширного списка типов данных Постгреса вам окажется недостаточно, вы можете использовать команду CREATE TYPE, чтобы создать новые типы данных, такие как составной, перечисляемый, диапазон и базовый. Рассмотрим пример создания и отправки запросов нового составного типа:

Создаем новый составной тип "wine" CREATE TYPE wine AS (wine_vineyard varchar(50), wine_type varchar(50), wine_year int); -- создаем таблицу, которая использует составной тип "wine" CREATE TABLE pairings (menu_entree varchar(50), wine_pairing wine); -- вставляем данные в таблицу при помощи выражения ROW INSERT INTO pairings VALUES ("Lobster Tail",ROW("Stag""s Leap","Chardonnay", 2012)), ("Elk Medallions",ROW("Rombauer","Cabernet Sauvignon",2012)); /* выборка из таблицы с использованием имени колонки (используйте скобки, отделяемые точкой от имени поля в составном типе) */ SELECT (wine_pairing).wine_vineyard, (wine_pairing).wine_type FROM pairings WHERE menu_entree = "Elk Medallions";
Поскольку они не являются объектно-реляционными, MySQL, MariaDB и Firebird не предоставляют такую мощную функциональность.

Размеры данных

PostgreSQL может обрабатывать много данных. Текущие опубликованные ограничения перечислены ниже:

В Compose [прим. пер.: организация, в которой трудится автор оригинальной статьи] мы автоматически масштабируем вашу инсталляцию, чтобы вам не приходилось волноваться о росте количества данных. Но, как известно любому администратору баз данных, стоит с опаской относиться к слишком большим и неограниченным возможностям. Мы советуем руководствоваться здравым смыслом при создании таблиц и добавлении индексов.

Для сравнения, MySQL и MariaDB печально известны ограничением размера строк в 65 535 байт. Firebird также предлагает всего лишь 64Кб в качестве максимального размера строки. Обычно объём данных ограничивается максимальным размером файлов операционной системы. Поскольку PostgreSQL умеет хранить табличные данные в множестве файлов меньшего размера, он может обойти это ограничение. Но стоит отметить, что слишком большое количество файлов может негативно сказаться на производительности. MySQL и MariaDB поддерживают большее количество столбцов в таблице (до 4,096 в зависимости от типа данных) и большие индивидуальные размеры таблицы, чем PostgreSQL, но необходимость превысить существующие ограничения Постгреса возникает лишь в крайне редких случаях.

Целостность данных

Постгрес стремится соответствовать стандарту ANSI-SQL:2008, отвечает требованиям ACID (атомарность, согласованность, изолированность и надежность) и известен своей ссылочной и транзакционной целостностью. Первичные ключи, ограничивающие и каскадные внешние ключи, уникальные ограничения, ограничения NOT NULL, проверочные ограничения и другие функции обеспечения целостности данных дают уверенность, что только корректные данные будут сохранены.

MySQL и MariaDB больше работают на то, чтобы соответствовать стандарту SQL с движками таблиц InnoDB/XtraDB. Теперь они предлагают опцию STRICT с использованием режимов SQL, которая устанавливает проверки корректности используемых данных. Несмотря на это, в зависимости от того, какой режим вы используете, недостоверные и даже урезанные без вашего ведома данные могут быть вставлены или созданы при обновлении. Ни одна из этих баз данных сейчас не поддерживает CHECK ограничения. Кроме того, у них существует множество особенностей в отношении ограничений ссылочной целостности по внешним ключам. В дополнение к вышесказанному, целостность данных может существенно пострадать в зависимости от выбранного движка хранения. MySQL (и fork MariaDB) не делают секрета из того, что променяли целостность и соответствие стандартам на скорость и эффективность.

Подводя итоги

У Постгреса множество возможностей. Созданный с использованием объектно-реляционной модели, он поддерживает сложные структуры и широкий спектр встроенных и определяемых пользователем типов данных. Он обеспечивает расширенную ёмкость данных и заслужил доверие бережным отношением к целостности данных. Возможно, вам не понадобятся все те продвинутые функции хранения данных, которые мы исследовали в этой статье, но, поскольку потребности могут быстро возрасти, есть несомненное преимущество в том, чтобы иметь всё это под рукой.

Если вам кажется, что PostgreSQL не соответствует вашим потребностям, или вы предпочитаете “стрелять от бедра”, тогда вам стоит обратить внимание на NoSQL базы данных, которые мы предлагаем в Compose, или подумать о других SQL базах данных, которые мы упоминали. У каждой из них есть свои преимущества. Compose твёрдо уверен, что очень важно выбрать правильную базу данных для конкретной задачи… иногда это означает, что нужно выбрать несколько баз данных!

Хотите больше Постгреса?

PostgreSQL — это кроссплатформенная объектно-реляционная СУБД с открытым исходным кодом. Из этой статьи вы узнаете, как установить PostgreSQL в Ubuntu Linux, подключиться к нему и выполнить пару простых SQL-запросов, а также о том, как настроить резервное копирование.

Чтобы установить PostgreSQL 9.2 в Ubuntu 12.10, выполните следующие команды:

sudo apt-add-repository ppa:pitti/ postgresql
sudo apt-get update
sudo apt-get install postgresql-9.2

Попробуем поработать с СУБД через оболочку:

sudo -u postgres psql

Создадим тестовую базу данных и тестового пользователя:

CREATE DATABASE test_database;
CREATE USER test_user WITH password "qwerty" ;
GRANT ALL ON DATABASE test_database TO test_user;

Для выхода из оболочки введите команду \q .

Теперь попробуем поработать с созданной базой данных от имени test_user:

psql -h localhost test_database test_user

Создадим новую таблицу:

CREATE SEQUENCE user_ids;
CREATE TABLE users (
id INTEGER PRIMARY KEY DEFAULT NEXTVAL ("user_ids" ) ,
login CHAR (64 ) ,
password CHAR (64 ) ) ;

Обратите внимание, что в отличие от некоторых других СУБД, в PostgreSQL нет столбцов со свойством auto_increment. Вместо этого в постгресе используются последовательности (sequences). На данный момент достаточно знать, что с помощью функции nextval мы можем получать уникальные числа для заданной последовательности:

SELECT NEXTVAL ("user_ids" ) ;

Прописав в качестве значения по умолчанию для поля id таблицы users значение NEXTVAL ("user_ids" ) , мы добились того же эффекта, что дает auto_increment. При добавлении новых записей в таблицу мы можем не указывать id, потому что уникальный id будет сгенерирован автоматически. Несколько таблиц могут использовать одну и ту же последовательность. Таким образом мы сможем гарантировать, что значения некоторых полей у этих таблиц не пересекаются. В этом смысле последовательности более гибки, чем auto_increment.

Точно такую же таблицу можно создать и при помощи всего лишь одной команды:

CREATE TABLE users2 (
id SERIAL PRIMARY KEY ,
login CHAR (64 ) ,
password CHAR (64 ) ) ;

В этом случае последовательность для поля id создается автоматически.

Теперь с помощью команды \d можно ознакомиться со списком всех доступных таблиц, а с помощью \d users — увидеть описание таблицы users. Если вы не получили интересующую вас информацию, попробуйте \d+ вместо \d . Список баз данных можно получить командой \l , а переключиться на конкретную БД — командой \c dbname . Для отображения справки по командам скажите \? .

Важно отметить, что в PostgreSQL по умолчанию имена таблиц и столбцов приводятся к нижнему регистру. Если это поведение нежелательно, можно воспользоваться двойными кавычками:

CREATE TABLE "anotherTable" ("someValue" VARCHAR (64 ) ) ;

Еще одна особенность PostgreSQL, с которой могут возникнуть сложности в начале работы с этой СУБД — так называемые «схемы». Схема представляет собой что-то вроде пространства имен для таблиц, как бы каталог с таблицами внутри базы данных.

Создание схемы:

CREATE SCHEMA bookings;

Переключение на схему:

SET search_path TO bookings;

Просмотреть список существующих схем можно командой \dn . По умолчанию используется схема с именем public. В принципе, можно успешно использовать PostgreSQL, и не зная про существование схем. Но при работе с унаследованным кодом, а также в некоторых граничных случаях, знание о схемах может очень пригодиться.

В остальном работа с PostgreSQL мало чем отличается от работы с любой другой реляционной СУБД:

INSERT INTO users (login, password)
VALUES ("afiskon" , "123456" ) ;
SELECT * FROM users;

Если сейчас вы попытаетесь подключиться к постгресу с другой машины, то потерпите неудачу:

psql -h 192.168.0.1 test_database test_user

Psql: could not connect to server: Connection refused
Is the server running on host "192.168.0.1" and accepting
TCP/IP connections on port 5432?

Чтобы исправить это, добавьте строку:

listen_addresses = "localhost,192.168.0.1"

… в файл /etc/postgresql/9.2/main/postgresql.conf, а также.

Поддерживаемые встроенные типы данных

Числовые типы
smallint короткое 2-х байтовое целое
integer обычное 4-х байтовое целое
bigint большое 8-байтовое целое
decimal
numeric дробное с фиксированной точкой
real дробное с плавающей точкой
double precision дробное с плавающей точкой двойной точности
serial целое с автоувеличением
bigserial большое целое с автоувеличением
Денежные типы
money для хранения денежных значений
Символьные типы
character varying(n), varchar(n) строка переменной длины с ограничением
character(n), char(n) строка фиксированной длины
text строка переменной неограниченной длины
Бинарные (двоичные) типы
bytea бинарная строка переменной длины
Дата и время
timestamp [ (p) ] [ без часового пояса ] дата и время
timestamp [ (p) ] с часовым поясом дата и время с часовым поясом
interval [ (p) ] интервал времени
date только дата
time [ (p) ] [ без часового пояса ] только время
time [ (p) ] с часовым поясом только время с часовым поясом
Логические типы
boolean TRUE или FALSE
Геометрические типы
point Точка на плоскости (x,y)
line Невидимая линия (не полностью реализовано)
lseg Видимый отрезок ((x1,y1),(x2,y2))
box Четырёхугольник ((x1,y1),(x2,y2))
path Замкнутый многоугольник (похож на полигон) ((x1,y1),…)
path Ломаная линия [(x1,y1),…]
polygon Полигон (похож на замкнутый многоугольник) ((x1,y1),…)
circle Круг (x,y),r (центр и радиус)
Типы для адресов компьютерных сетей
cidr IPv4 или IPv6 сеть
inet IPv4 или IPv6 хост и сеть
macaddr MAC адрес
Битовые строки
bit [ (n) ] битовая строка фиксированной длины
bit varying [ (n) ] битовая строка переменной длины
Типы для поиска текста
tsquery запрос на поиск текста
tsvector список для поиска текста
UUID тип
uuid универсальный уникальный идентификатор
XML типы
xml данные XML

Кроме этого набора типов, PostgreSQL предоставляет возможность создания списков (тип ENUM), массивов типов, составных типов наподобие структур в языке C, а также имеет типы для уникальной идентификации объектов (OID) и псевдотипы для хранимых процедур.

Типы данных, создаваемые пользователем

С помощью команды CREATE TYPE пользователи могут создавать новые типы данных для своих нужд.

Локализация

База PostgreSQL работает с локализацией, установленной в операционной системе и отвечающей стандарту POSIX. На практике это означает возможность работы с несколькими десятками языков, в том числе и с русским языком во всех возможных кодировках: koi8-r, cp1251, iso8859-5 и UTF-8. Возможность корректной работы PostgreSQL с конкретной кодировкой зависит от корректной поддержки этой кодировки средствами самой операционной системы.
Благодаря использованию библиотеки gettext, сообщения об ошибках и в утилитах переведены на многие языки, в том числе и на русский.

Языки

которые могут использоваться для написания хранимых процедур (функций)

  • Python
  • C/C++
  • PL/pgSQL

Функции и операторы

Для каждого из перечисленных выше типов существует свой набор функций и операторов, который делает работу с данными этого типа максимально удобной, гибкой и производительной. Перечисление этих функций и операторов занимает довольно солидный объём документации, поставляемой с PostgreSQL , поэтому подробности смотрите там.

Индексы
PostgreSQL предлагает 4-ре типа индексов: B-tree, Hash, GiST и GIN. Каждый тип индекса имеет свой алгоритм реализации, что позволяет существенно увеличить быстродействие, если для определённого вида данных выборать определённый типа индекса.
PostgreSQL позволяет создавать индексы с использованием выражений, например: CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));
PostgreSQL позволяет создавать частичные (partial) индексы, используя выражение WHERE, например: CREATE INDEX orders_unbilled_index ON orders (order_nr) WHERE billed IS NOT true;.

Полнотекстовый поиск
Начиная с версии 8.3 в ядро PostgreSQL включен функционал полнотекстового поиска (который раньше поставлялся в виде отдельного модуля-расширения).
Полнотекстовый поиск позволяет создавать запросы к текстовым документами, такие как: “найти все документы, содержащие определённые слова и выдать их в определённом порядке “, где и сами запросы и порядок выдачи могут гибко настраиваться в зависимости от конкретных потребностей.

Многоверсионный контроль конкурентых транзакций и изоляция транзакций
В PostgreSQL реализован (Multiversion Concurrency Control, MVCC) — многоверсионный контроль конкурентных транзакций, который управляет конкурентным доступом к данным на многоверсионной основе. На практике это означает, что при запросе к БД каждая транзакция видит как бы снимок данных (версию) на момент этого снимка, а не текущее состояние данных. Таким образом транзакции защищаются от просмотра нецелостных данных, которые могут ещё только формироваться другими конкурентными транзакциями в тех же самых строках таблицы. Этим же достигается изоляция транзакций для каждой сессии к БД. MMVC позволяет избегать методов явной блокировки, которые применяются в традиционных СУБД и таким образом, минимизирует блокировки данных и позволяет увеличить производительность в многопользовательской работе. Основное преимущество MMVC состоит в том, что чтение данных никогда не блокирует запись, а запись никогда не блокирует чтение.
Также в PostgreSQL реализованы традиционные схемы явных блокировок данных, применяющихся для изоляции транзаций, такие как:

  • блокировка на уровне таблицы
  • блокировка на уровне записи в таблице (строки)
  • advisory блокировки (для собственных блокировок на уровне приложений)

Также реализовано отслеживание deadlocks (взаимных блокировок)

Журналы (логи) опережающей записи (WAL)
PostgreSQL реализует механизм WAL (журналов опережающей записи), что даёт такие преимущества как:

  • Повышение производительности работы СУБД за счёт того, что записываются только сделанные изменения без переписывания всех данных в таблицах.
  • Повышение надёжности хранения данных за счёт предварительного сохранения буферизируемых данных в WAL
  • Возможность отката состояния БД на любой момент времени, путём применения WAL к существующей резервной копии

Табличные пространства (tablespaces)
Табличные пространства в PostgreSQL позволяют задать место хранения объектов БД в файловой системе. Сперва создаётся табличное пространство с определённым именем. Далее, это имя может быть использовано при создании таблиц, чтобы разместить эти таблицы именно в данном табличном пространстве

Гибкая настройка сервера
Основной конфигурационный файл postgresql.conf включает более настраиваемых 150 параметров по разделам:

  • Файлы и пути к ним
  • Сетевые соединения
  • Авторизация и безопасность
  • Выделение ресурсов
  • WAL — логи обратной записи
  • Планирование запросов
  • Ошибки и протоколирование
  • Статистика запросов
  • Оптимизация данных через VACUUM
  • Управление блокировками
  • Совместимость версий и платформ
  • Настройки клиента по умолчанию

Дополнительный конфигурационный файл pg_hba.conf включает в себя настройки доступа к отдельным БД, такие как указание конкретных IP адресов и(или) сетей, с которых разрешён доступ, а также метод(ы) авторизации для доступа к БД и возможность включения безопасных (зашифрованных соединений) через SSL.

Ограничения целостности
Поддерживаются следующие ограничения целостности:

  • NOT NULL — не NULL
  • UNIQUE — уникальность
  • PRIMARY KEY — первичный ключ
  • FOREIGN KEY/REFERENCES — внешний ключ, ссылки
  • CHECK — проверка

Хранимые процедуры
Хранимые процедуры в PostgreSQL могут быть написаны на любом из поддерживаемых встроенных языков. Хранимые процедуры могут быть использованы в триггерах и могут возвращать любой из поддерживаемых типов данных, а также массивы и списки.

Триггеры
Триггеры предназначены для автоматического выполнения отдельных процедур в зависимости от операции, для которой они были назначены. Триггеры могут быть назначены до или после операций INSERT, UPDATE или DELETE как для случаев изменения записи в таблице так и для случая выполнения оператора SQL. Если произошло событие, на которое был назначен триггер, то вызывается закреплённая за этим триггером процедура.

Система правил
Система правил (более правильно говорить: система правил изменения запросов) позволяет изменять запросы согласно заданным правилам и затем передаёт изменённый запрос планировщику запросов для планирования и выполнения. Система правил является очень мощным инструментом и может быть использована во многих случаях таких как хранимые процедуры, представления (views) и версии.

Схемы

PostgreSQL поддерживает схемы. Схемы являются как бы дополнительными областями видимости внутри базы данных. Также схему можно сравнить и c дополнительным путём (название схемы должно указываться перед названием таблицы) и с каталогом, внутри которого можно разместить таблицы. В любой базе данных по умолчанию существует схема public , в которой по умолчанию создаются все таблицы и которую не нужно указывать специально, но администратор БД может создавать другие схемы (и разграничивать доступ к ним), что обеспечивает ещё один уровень распределения прав доступа для пользователей, позволяет выделить каждому пользователю как бы персональный раздел внутри БД с теми же самыми названиями таблиц, что и у других пользователей.

Роли и привелегии
PostgreSQL управляет привелегиями в БД, используя концепцию ролей . Ролью может являться как отдельный пользователь БД, так и группа пользователей. Роли могут являться владельцами объектов в БД (например таблиц), а также могут назначать привелегии доступа к этим объектам для других ролей. Возможно предоставить одной роли членство в другой роли и соответственно передать этой роли права той роли, членом которой она будет являться. Концепция ролей заменила старую концепцию пользователей и групп, предоставив эту же функциональность.

Сбор статистики
Чтобы построить производительный план запроса, планировщик запросов в PostgreSQL использует так называемую статистику или статистическую информацию, собранную на основе анализа данных в таблицах, которая собирается с помощью команды ANALYZE, в свою очередь являющейся частью процесса обслуживания БД VACUUM. Начиная с версии 8.1, в PostgreSQL появилась возможность вместо ручного вызова команд сбора статистики, работать с новым инструментом, который назвали autovacuum . С помощью autovacuum весь необходимый сбор статистики и процесс обслуживания БД происходит в фоновом режиме автоматически. Исходя из настроек, PostgreSQL сам определяет таблицы, для которых необходимо провести сбор статистики и выполнить обслуживание VACUUM.

Резервное копирование и восстановление
PostgreSQL предлагает несколько режимов резервного копирования и восстановления БД. Поскольку БД располагаются в файловой системе, вполне нормальным методом является резервное копирование на уровне файлов, т.е. самого каталога где размещаются файлы БД. Единственное условие такого режима — полный останов сервера PostgreSQL . Однако, для систем высокой готовности такой режим резервного копирования недопустим, поэтому PostgreSQL позволяет выполнять резервное копирование при запущенном сервере, не прерывая его обычной работы. Наиболее простой режим — это получение дампа БД в текстовом виде (в форме операторов SQL) на стандартный вывод. Для экономии дискового пространства можно сразу же перенаправлять такой дамп на стандартный ввод утилите сжатия (например gzip). Также существует возможность создания дампа БД в двоичной форме, а также возможность задавать специальные параметры для большего удобства в получении резервной копии и её последующего восстановления.
PostgreSQL также предоставляет возможность резервного копирования и за счёт этого, восстановление БД на конкретный момент времени, а также инкрементальное резервное копирование.

Базы данных - это логически смоделированные хранилища любых типов данных. Каждая база данных, не являющаяся бессхемной, следует модели, которая задаёт определённую структуру обработки данных. СУБД - это приложения (или библиотеки), управляющие базами данных различных форм, размеров и типов.

Чтобы лучше разобраться в СУБД, ознакомьтесь с .

Реляционные системы управления базами данных

Реляционные системы реализуют реляционную модель работы с данными, которая определяет всю хранимую информацию как набор связанных записей и атрибутов в таблице.

СУБД такого типа используют структуры (таблицы) для хранения и работы с данными. Каждый столбец (атрибут) содержит свой тип информации. Каждая запись в базе данных, обладающая уникальным ключом, передаётся в строку таблицы, и её атрибуты отображаются в столбцах таблицы.

Отношения и типы данных

Отношения можно определить как математические множества, содержащие наборы атрибутов, отображающие хранящуюся информацию.

Каждый элемент, формирующий запись, должен удовлетворять определённому типу данных (целое число, дата и т.д.). Различные РСУБД используют разные типы данные, которые не всегда взаимозаменяемы.

Такого рода ограничения обычны для реляционных баз данных. Фактически, они и формируют суть отношений.

Популярные РСУБД

В этой статье мы расскажем о 3 наиболее популярных РСУБД:

  • SQLite: очень мощная встраиваемая РСУБД.
  • MySQL: самая популярная и часто используемая РСУБД.
  • PostgreSQL: самая продвинутая и гибкая РСУБД.

SQLite

SQLite - это изумительная библиотека, встраиваемая в приложение, которое её использует. Будучи файловой БД, она предоставляет отличный набор инструментов для более простой (в сравнении с серверными БД) обработки любых видов данных.

Когда приложение использует SQLite, их связь производится с помощью функциональных и прямых вызовов файлов, содержащих данные (например, баз данных SQLite), а не какого-то интерфейса, что повышает скорость и производительность операций.

Поддерживаемые типы данных

  • NULL: NULL-значение.
  • INTEGER: целое со знаком, хранящееся в 1, 2, 3, 4, 6, или 8 байтах.
  • REAL: число с плавающей запятой, хранящееся в 8-байтовом формате IEEE.
  • TEXT: текстовая строка с кодировкойUTF-8, UTF-16BE или UTF-16LE.
  • BLOB: тип данных, хранящийся точно в таком же виде, в каком и был получен.

Note: для получения более подробной информации ознакомьтесь с документацией .

Преимущества

  • Файловая: вся база данных хранится в одном файле, что облегчает перемещение.
  • Стандартизированная: SQLite использует SQL; некоторые функции опущены (RIGHT OUTER JOIN или FOR EACH STATEMENT), однако, есть и некоторые новые.
  • Отлично подходит для разработки и даже тестирования: во время этапа разработки большинству требуется масштабируемое решение. SQLite, со своим богатым набором функций, может предоставить более чем достаточный функционал, при этом будучи достаточно простой для работы с одним файлом и связанной сишной библиотекой.

Недостатки

  • Отсутствие пользовательского управления: продвинутые БД предоставляют пользователям возможность управлять связями в таблицах в соответствии с привилегиями, но у SQLite такой функции нет.
  • Невозможность дополнительной настройки: опять-таки, SQLite нельзя сделать более производительной, поковырявшись в настройках - так уж она устроена.

Когда стоит использовать SQLite

  • Встроенные приложения: все портируемые не предназначенные для масштабирования приложения - например, локальные однопользовательские приложения, мобильные приложения или игры.
  • Система доступа к дисковой памяти: в большинстве случаев приложения, часто производящие прямые операции чтения/записи на диск, можно перевести на SQLite для повышения производительности.
  • Тестирование: отлично подойдёт для большинства приложений, частью функционала которых является тестирование бизнес-логики.

Когда не стоит использовать SQLite

  • Многопользовательские приложения: если вы работаете над приложением, доступом к БД в котором будут одновременно пользоваться несколько человек, лучше выбрать полнофункциональную РСУБД - например, MySQL.
  • Приложения, записывающие большие объёмы данных: одним из ограничений SQLite являются операции записи. Эта РСУБД допускает единовременное исполнение лишь одной операции записи.

MySQL

MySQL - это самая популярная из всех крупных серверных БД. Разобраться в ней очень просто, да и в сети о ней можно найти большое количество информации. Хотя MySQL и не пытается полностью реализовать SQL-стандарты, она предлагает широкий функционал. Приложения общаются с базой данных через процесс-демон.

Поддерживаемые типы данных

  • TINYINT: очень маленькое целое.
  • SMALLINT: маленькое целое.
  • MEDIUMINT: целое среднего размера.
  • INT или INTEGER: целое нормального размера.
  • BIGINT: большое целое.
  • FLOAT: знаковое число с плавающей запятой одинарной точности.
  • DOUBLE, DOUBLE PRECISION, REAL: знаковое число с плавающей запятой двойной точности.
  • DECIMAL, NUMERIC: знаковое число с плавающей запятой.
  • DATE: дата.
  • DATETIME: комбинация даты и времени.
  • TIMESTAMP: отметка времени.
  • TIME: время.
  • YEAR: год в формате YY или YYYY.
  • CHAR: строка фиксированного размера, дополняемая справа пробелами до максимальной длины.
  • VARCHAR: строка переменной длины.
  • TINYBLOB, TINYTEXT: BLOB- или TEXT-столбец длиной максимум 255 (2^8 — 1) символов.
  • BLOB, TEXT: BLOB- или TEXT-столбец длиной максимум 65535 (2^16 — 1) символов.
  • MEDIUMBLOB, MEDIUMTEXT: BLOB- или TEXT-столбец длиной максимум 16777215 (2^24 — 1) символов.
  • LONGBLOB, LONGTEXT: BLOB- или TEXT-столбец длиной максимум 4294967295 (2^32 — 1) символов.
  • ENUM: перечисление.
  • SET: множества.

Преимущества

  • Простота: MySQL легко устанавливается. Существует много сторонних инструментов, включая визуальные, облегчающих начало работы с БД.
  • Безопасность: в MySQL встроено много функций безопасности.
  • Мощность и масштабируемость: MySQL может работать с действительно большими объёмами данных, и неплохо походит для масштабируемых приложений.
  • Скорость: пренебрежение некоторыми стандартами позволяет MySQL работать производительнее, местами срезая на поворотах.

Недостатки

  • Известные ограничения: по определению, MySQL не может сделать всё, что угодно, и в ней присутствуют определённые ограничения функциональности.
  • Вопросы надёжности: некоторые операции реализованы менее надёжно, чем в других РСУБД.
  • Застой в разработке: хотя MySQL и является open-source продуктом, работа над ней сильно заторможена. Тем не менее, существует несколько БД, полностью основанных на MySQL (например, MariaDB). Кстати, подробнее о родстве MariaDB и MySQL можно из нашего с создателем обеих РСУБД - Джеймсом Боттомли.

Когда стоит использовать MySQL

  • Распределённые операции: когда вам нужен функционал бо́льший, чем может предоставить SQLite, стоит использовать MySQL.
  • Высокая безопасность: функции безопасности MySQL предоставляют надёжную защиту доступа и использования данных.
  • Веб-сайты и приложения: большая часть веб-ресурсов вполне может работать с MySQL, несмотря на ограничения. Этот инструмент весьма гибок и прост в обращении, что только на руку в длительной перспективе.
  • Кастомные решения: если вы работаете над очень специфичным продуктом, MySQL подстроится под ваши потребности благодаря широкому спектру настроек и режимов работы.

Когда не стоит использовать MySQL

  • SQL-совместимость: поскольку MySQL не пытается полностью реализовать стандарты SQL, она не является полностью совместимой с SQL. Из-за этого могут возникнуть проблемы при интеграции с другими РСУБД.
  • Конкурентность: хотя MySQL неплохо справляется с операциями чтения, одновременные операции чтения-записи могут вызвать проблемы.
  • Недостаток функций: в зависимости от выбора движка MySQL может недоставать некоторых функций.

PostgreSQL

PostgreSQL - это самая продвинутая РСУБД, ориентирующаяся в первую очередь на полное соответствие стандартам и расширяемость. PostgreSQL, или Postgres, пытается полностью соответствовать SQL-стандартам ANSI/ISO.

PostgreSQL отличается от других РСУБД тем, что обладает объектно-ориентированным функционалом, в том числе полной поддержкой концепта ACID (Atomicity, Consistency, Isolation, Durability).

Будучи основанным на мощной технологии Postgres отлично справляется с одновременной обработкой нескольких заданий. Поддержка конкурентности реализована с использованием MVCC (Multiversion Concurrency Control), что также обеспечивает совместимость с ACID.

Хотя эта РСУБД не так популярна, как MySQL, существует много сторонних инструментов и библиотек для облегчения работы с PostgreSQL.

Поддерживаемые типы данных

  • bigint: знаковое 8-байтное целое.
  • bigserial: автоматически инкрементируемое 8-битное целое.
  • bit [(n)]: битовая строка фиксированной длины.
  • bit varying [(n)]: битовая строка переменной длины.
  • boolean: булевская величина.
  • box: прямоугольник на плоскости.
  • bytea: бинарные данные.
  • character varying [(n)]: строка символов фиксированной длины.
  • character [(n)]:
  • cidr: сетевой адрес IPv4 или IPv6.
  • circle: круг на плоскости.
  • date: календарная дата.
  • double precision: число с плавающей запятой двойной точности.
  • inet: адрес хоста IPv4 или IPv6.
  • integer: знаковое 4-байтное целое.
  • interval [(p)]: временной промежуток.
  • line: бесконечная прямая на плоскости.
  • lseg: отрезок на плоскости.
  • macaddr: MAC-адрес.
  • money: денежная величина.
  • path: геометрический путь на плоскости.
  • point: геометрическая точка на плоскости.
  • polygon: многоугольник на плоскости.
  • real: число с плавающей запятой одинарной точности.
  • smallint: знаковое 2-байтное целое.
  • serial: автоматически инкрементируемое 4-битное целое.
  • text: строка символов переменной длины.
  • time [(p)] : время суток (без часового пояса).
  • time [(p)] with time zone: время суток (с часовым поясом).
  • timestamp [(p)] : дата ивремя (без часового пояса).
  • timestamp [(p)] with time zone: дата и время (с часовым поясом).
  • tsquery: запрос текстового поиска.
  • tsvector: документ текстового поиска.
  • txid_snapshot: снэпшот ID пользовательской транзакции.
  • uuid: уникальный идентификатор.
  • xml: XML-данные.

Преимущества

  • Полная SQL-совместимость .
  • Сообщество: PostgreSQL поддерживается опытным сообществом 24/7.
  • Поддержка сторонними организациями: несмотря на очень продвинутые функции, PostgreSQL используется в многих инструментах, связанных с РСУБД.
  • Расширяемость: PostgreSQL можно программно расширить за счёт хранимых процедур.
  • Объектно-ориентированность: PostgreSQL - не только реляционная, но и объектно-ориентированная СУБД.

Недостатки

  • Производительность: В простых операциях чтения PostgreSQL может уступать своим соперникам.
  • Популярность: из-за своей сложности инструмент не очень популярен.
  • Хостинг: из-за вышеперечисленных факторов проблематично найти подходящего провайдера.

Когда стоит использовать PostgreSQL

  • Целостность данных: если приоритет стоит на надёжность и целостность данных, PostgreSQL - лучший выбор.
  • Сложные процедуры: если ваша БД должна выполнять сложные процедуры, стоит выбрать PostgreSQL в силу её расширяемости.
  • Интеграция: если в будущем вам предстоит перемещать всю базу на другое решение, меньше всего проблем возникнет с PostgreSQL.

Когда не стоит использовать PostgreSQL

  • Скорость: если всё, что нужно - это быстрые операции чтения, не стоит использовать PostgreSQL.
  • Простые ситуации: если вам не требуется повышенная надёжность, поддержка ACID и всё такое, использование PostgreSQL - это стрельба из пушки по мухам.
  • Скриптовые языки - PL/Lua, PL/LOLCODE, PL/Perl, plPHP, PL/Python, PL/Ruby, PL/sh, PL/Tcl и PL/Scheme;
  • Классические языки - C, C++, Java (через модуль PL/Java);
  • Статистический язык R (через модуль PL/R).
  • PostgreSQL допускает использование функций, возвращающих набор записей, который далее можно использовать так же, как и результат выполнения обычного запроса.

    Функции могут выполняться как с правами их создателя, так и с правами текущего пользователя. Иногда функции отождествляются с хранимыми процедурами, однако между этими понятиями есть различие.

    Триггеры

    Триггеры определяются как функции, инициируемые DML-операциями. Например, операция INSERT может запускать триггер, проверяющий добавленную запись на соответствия определённым условиям. При написании функций для триггеров могут использоваться различные языки программирования.

    Триггеры ассоциируются с таблицами. Множественные триггеры выполняются в алфавитном порядке.

    Правила и представления

    Механизм правил (англ. rules) представляет собой механизм создания пользовательских обработчиков не только DML-операций, но и операции выборки. Основное отличие от механизма триггеров заключается в том, что правила срабатывают на этапе разбора запроса, до выбора оптимального плана выполнения и самого процесса выполнения. Правила позволяют переопределять поведение системы при выполнении SQL-операции к таблице. Хорошим примером является реализация механизма представлений (англ. views): при создании представления создается правило, которое определяет, что вместо выполнения операции выборки к представлению система должна выполнять операцию выборки к базовой таблице/таблицам с учетом условий выборки, лежащих в основе определения представления. Для создания представлений, поддерживающих операции обновления, правила для операций вставки, изменения и удаления строк должны быть определены пользователем.

    Индексы

    В PostgreSQL имеется поддержка индексов следующих типов: B-дерево , хэш, R-дерево, GiST, GIN. При необходимости можно создавать новые типы индексов, хотя это далеко не тривиальный процесс. Индексы в PostgreSQL обладают следующими свойствами:

    • возможен просмотр индекса не только в прямом, но и в обратном порядке - создание отдельного индекса для работы конструкции ORDER BY ... DESC не нужно;
    • возможно создание индекса над несколькими столбцами таблицы, в том числе над столбцами различных типов данных;
    • индексы могут быть функциональными, то есть строиться не на базе набора значений некоего столбца/столбцов, а на базе набора значений функции от набора значений;
    • индексы могут быть частичными, то есть строиться только по части таблицы (по некоторой её проекции); в некоторых случаях это помогает создавать намного более компактные индексы или достигать улучшения производительности за счёт использования разных типов индексов для разных (например, с точки зрения частоты обновления) частей таблицы;
    • планировщик запросов может использовать несколько индексов одновременно для выполнения сложных запросов.

    Многоверсионность (MVCC)

    PostgreSQL поддерживает одновременную модификацию БД несколькими пользователями с помощью механизма Multiversion Concurrency Control (MVCC). Благодаря этому соблюдаются требования ACID и практически отпадает нужда в блокировках чтения.

    Полнотекстовый поиск

    PostgreSQL обладает встроенной системой полнотекстового поиска, позволяющей искать внутри базы данных документы и сортировать их в заданном порядке. Основными преимуществами использования встроенного полнотекстового поиска являются: тесная интеграция с СУБД(транзакционность, одновременный доступ, восстановление после сбоев), масштабируемость, широкие возможности настройки (словари, парсеры, и т.д.).

    Геоинформационные системы

    PostGIS - расширение СУБД PostgreSQL предназначенное для хранения в базе географических данных. PostGIS включает поддержку пространственных индексов R-Tree/GiST и функции обработки геоданных.

    2019: Совместимость с TerraLink xDE

    2018

    Включение в список коммитеров СУБД PostgreSQL сооснователя Postgres Professional Александра Короткова

    В июне 2018 года список коммитеров (разработчиков, вносящих вклад в развитие кода) СУБД PostgreSQL пополнился третьим россиянином. В список основных коммитеров ядра PostgreSQL , сооснователь и руководитель разработки российской компании Postgres Professional .

    2017

    Документация версии 10 локализована для России

    Основные нововведения:

    • Логическая репликация : отдельные части этого механизма были добавлены в PostgreSQL уже довольно давно, а в этой версии логическая репликация стала полностью доступна для пользователей. С ее помощью можно выборочно реплицировать отдельные таблицы на другой сервер , который при этом может выполнять как читающие, так и пишущие запросы. Серверы, участвующие в репликации, могут работать под управлением разных версий PostgreSQL, что позволяет проводить обновление кластера с минимальным временем простоя.
    • Декларативное секционирование избавляет администратора от необходимости вручную определять иерархию таблиц, создавать триггеры и ограничения целостности.
    • Параллельное выполнение запросов стало возможным для сканирования битовых карт и индексов, для соединения слиянием и подзапросов в дополнение к тем возможностям, которые появились в предыдущей версии.
    • Синхронная репликация с учетом кворума позволяет фиксировать изменения, если их подтвердило необходимое число произвольных реплик.
    • SCRAM-аутентификация является более криптостойким вариантом используемой ранее MD5-аутентификации .

    Всего, по словам разработчиков, в версию 10 вошло более 100 изменений и улучшений, часть из которых выполнена в компании Postgres Professional .

    Интеграция с Ethereum

    14 сентября 2017 года российская компания Postgres Professional объявила о создании прототипа расширения Posthereum для интеграции полнофункциональной СУБД PostgreSQL с блокчейн -платформой , предназначенной для регистрации сделок с любыми видами активов на основе системы «умных контрактов». По замыслу компании, крупные российские банки, корпорации и госструктуры, работающие с СУБД PostgreSQL, с помощью данной разработки смогут объединить базы данных с блокчейн-приложениями на основе Ethereum. Подробнее .

    2016

    PostgreSQL 9.6

    29 сентября 2016 года сообщество разработчиков представило стабильную ветку СУБД PostgreSQL 9.6. Обновления для нее 9.6 будут выходить в течение пяти лет, до сентября 2021 года.

    Основные дополнения

    Сравнение Tibero и PostgreSQL

    Корректирующий выпуск всех веток

    11 февраля 2016 года сообщество разработчиков PostgreSQL сообщило о выпуске корректирующих обновлений для всех поддерживаемых веток PostgreSQL: 9.5.1, 9.4.6, 9.3.11, 9.2.15 и 9.1.20, в которых устранены две уязвимости, представлена порция исправлений ошибок, добавлена поддержка Python 3.5 в PL/Python и обеспечена возможность совместного использования Python2 и Python3 в одной БД .

    Поддержка ветки 9.0.x прекращена. Выпуск обновлений для ветки:

    • 9.1 продлен до сентября 2016 года.
    • 9.2 продлен до сентября 2017 года,
    • 9.3 продлен до сентября 2018 года,
    • 9.4 продлен до декабря 2019 года,
    • 9.5 продлен до января 2021 года.

    Первая из уязвимостей (CVE-2016-0773) проявляется в движке обработки регулярных выражений и может привести к краху бэкенда при разборе регулярных выражений с символами вне диапазона Unicode (проблеме подвержены системы, в которых пользовательский ввод применяется для генерации регулярного выражения).

    Вторая уязвимость (CVE-2016-0766) присутствует в движке PL/Java и позволяет повысить свои привилегии при работе с БД.

    PostgreSQL 9.5

    7 января 2016 года стало известно о выходе стабильной ветки СУБД PostgreSQL 9.5. Выпуск обновлений для ветки 9.5 будет поддерживаться до января 2021 года .

    Изменения

    • Функциональность "UPSERT" (добавить-или-модифицировать), реализованная через новое выражение "INSERT ... ON CONFLICT DO NOTHING/UPDATE", позволяющая обработать ситуацию невозможности добавления данных через "INSERT", например, из-за нарушения условий уникальности или недопустимости значения одного из полей. Вместо вывода ошибки теперь можно игнорировать выполнение оператора или изменить связанные с ключевым полем данные (т.е. если запись уже существует, вместо INSERT выполнить UPDATE);
    • Ограничение доступа на уровне строк (Row-Level Security, RLS). Доступ пользователей к данным в таблице теперь можно разграничивать на уровне отдельных строк, например, можно запретить определённой категории пользователей просмотр строк, в которых хранятся данные, добавленные другим пользователем. Для активации RLS следует использовать директиву "ALTER TABLE tablename ENABLE ROW LEVEL SECURITY", после чего следует задать правила доступа при помощи выражения "CREATE POLICY";
    • BRIN-индексы ("индексы блоковых зон", Block Range Index), позволяющие сверхкомпактно индексировать очень большие таблицы, без применения традиционных B-деревьев. Суть BRIN-индексов сводится к разбиению общего индекса на блоки, каждый из которых содержит данные индекса только для определённого диапазона значений. В тесте подобный метод оказался примерно в два раза медленнее b-деревьев при осуществлении операций выборки данных, но в 3-4 раза быстрее при создании и обновлении индекса, а также занял значительно меньше места на диске (64 Кб против 28 Мб);
    • Новые функции и операторы для типа данных JSONB. Для изменения значений в документе JSONB теперь можно обойтись без извлечения и переопределения всего документа, благодаря появлению функции jsonb_set(). Также добавлены функции json_strip_nulls (удаление атрибутов, содержащих значения NULL) и jsonb_pretty (вывод в отформатированном JSON). Добавлен оператор "||" для соединения двух значений JSONB;
    • Инструмент pg_rewind, позволяющий существенно упростить процесс восстановления отказоустойчивых конфигураций после переключения на резервный сервер. После возвращения в строй основного сервера возникает задача синхронизации его состояния с продолжившим работу запасным сервером, который успел накопить свою порцию изменений. Утилита pg_rewind пытается восстановить состояние первичного сервера по WAL-логу транзакций, перебирая их начиная с момента незадолго до сбоя, определяя изменённые данные и перенося только изменившиеся блоки, что позволяет обойтись без восстановления полной копии с работающего резервного сервера.
    • Значительно оптимизированы скорости сортировки и хэширования в памяти. Благодаря применению нового метода сортировки строковых значений и чисел, удалось до 20 раз увеличить скорость создания индексов, а время выполнения запросов требующих сортировки больших объёмов данных, сократить в 2-12 раз;
    • Добавлена поддержка выражения TABLESAMPLE, позволяющего сформировать выборку над неполным объёмом данных из больших таблиц, без выполнения ресурсоёмких операций сортировки над всей таблицей. Например, запрос "SELECT * FROM test TABLESAMPLE SYSTEM(10)" сформирует вывод, охватив только 10% от таблицы test. Доступно несколько алгоритмов отсеивания значений в процессе неполной выборки;
    • Улучшено масштабирование на системах с большим количеством процессорных ядер и оперативной памяти. Например, на системе с 24 ядрами CPU и 496 Гб ОЗУ в тесте EnterpriseDB при нагрузке в 64 одновременных соединения PostgreSQL 9.5 показал прирост производительности в 96% по сравнению с PostgreSQL 9.4;
    • Автоматизировано управление размером лога транзакций. Возможность исключения отражения таблиц в логе транзакций (ALTER TABLE ... SET LOGGED / UNLOGGED);
    • Аналитические возможности "GROUPING SETS", "CUBE" и "ROLLUP", позволяющие формировать вывод с группировкой по набору полей и рассчитывать число комбинаций различных категорий;
    • Улучшена репликация и средства повышения отказоустойчивости. Добавлен механизм отслеживания состояния выполнения репликации, в том числе реализованы методы для определения причины возникновения отдельных изменений в процессе выполнения логической репликации;
    • Произведены множественные улучшения в механизме Foreign Data Wrappers, включая выражение "IMPORT FOREIGN SCHEMA", которое позволяет автоматизировать импорт всех связанных внешних таблиц для существующих таблиц с выбранной меткой сервера. Кроме того, обеспечена возможность наследования внешних таблиц в локальных таблицах и наоборот, например, "CREATE local_customers () inherits (remote.customers);"
    • В утилиту vacuumdb добавлена опция "-j", позволяющая запускать VACUUM в несколько одновременно выполняемых потоков.

    2015

    Инфраструктура параллельных вычислений в PostgreSQL

    4 мая 2015 года стало известно о принятии изменений в дерево исходных текстов СУБД PostgreSQL с реализацией инфраструктуры для параллельных вычислений .

    Она предоставляет:

    • Удобные процедуры для координирования запуска и завершения работы параллельно выполняемых рабочих процессов;
    • Синхронизация различных внутренних состояний (GUCs, комбинированный маппинг CID, снапшоты транзакций) между лидером группы параллельных работ и непосредственно распараллеленными рабочими процессами;
    • Ограничение вызова различных операций, которые могут привести к внесению некорректных изменений в условиях активного распараллеливания;
    • Доставка уведомлений клиенту через сообщения ErrorResponse, NoticeResponse и NotifyResponse от работающих в параллельном режиме обработчиков.

    Postgres-XL на EcoServer - альтернатива для ЦОД

    13 августа 2015 года стало известно о завершении испытаний системы управления базами данных Postgres-XL на серверах линейки EcoServer .

    Тестирование проводилось с целью мониторинга новых технологий и реализации плана технологического развития на 2015 год.

    Андрей Черногоров , генеральный директор «Индиго ИТ », отметил: «Сегодня на рынке ИТ наиболее востребованными являются СУБД MS SQL и Oracle DataBase . Вместе с тем, по ряду ключевых возможностей им ни чем не уступает, а кое-где и превосходит, СУБД с открытыми кодами PostgreSQL , что открывает перед ней широкие перспективы для использования в рамках программы импортозамещения».

    Для тестирования специалисты компании подготовили идентичные для всех СУБД тестовые наборы данных. Объектом испытаний стала база данных объемом 1 ТБ, состоящая из 1 млн. бизнес-объектов. Продолжительность тестирования для каждой СУБД - 10 часов.

    В нем участвовали последние версии наиболее востребованных заказчиками «Индиго ИТ » СУБД :

    • открытая СУБД PostgreSQL 9.4 .

    Всего проведено 5 наборов тестов:

    • создание сложно структурированных документов,
    • обновление сложно структурированных документов,
    • поиск документов,
    • запись файла в базу данных,
    • получение файла из базы данных.

    Результаты тестирования, 2015

    Под временем, затраченным в каждом из наборов тестов указанных в таблице, имеется ввиду усредненное по всем наборам значение (мс). Тестирование проводилось на серверах с процессорами Intel Xeon Е5 v3 с 128 Гб ОЗУ.

    В результате нагрузочного тестирования на двух из пяти наборов тестов (создание сложно структурированных документов, обновление сложно структурированных документов) PostgreSQL 9.4 показала результаты почти в три раза лучше, чем у конкурентов. В остальных тестах (поиск документов, запись и получение файлов из БД) участники тестирования показали почти одинаковые результаты.

    Поддержка данной версией СУБД с открытым кодом PostgreSQL широко распространенного формата обмена данными JSON нацелена на растущий рынок нереляционных хранилищ данных NoSQL и особенно на популярную СУБД MongoDB .

    В первой бета-версии PostgreSQL 9.4 появился ряд новых функций, ориентированных на стремительно расширяющийся рынок веб-приложений, многим из которых требуются быстрые хранилища и выборка больших объемов пользовательских данных.

    Версия PostgreSQL 9.4 поддерживает формат JSON (JavaScript Simple Object Notation), который быстро завоевал популярность при организации обмена данными между различными системами, в том числе и с применением протокола REST (Representational State Transfer). Успех документальной СУБД MongoDB во многом обусловлен как раз растущей популярностью JSON .

    Структурированный формат PostgreSQL для сохранения данных в соответствии со спецификациями JSON (JSONB) исключает необходимость реструктуризации документа перед его занесением в базу данных. В результате PostgreSQL проглатывает документы так же быстро, как и MongoDB , продолжая при этом удовлетворять требованиям ACID (atomicity, consistency, isolation, durability - атомарность, согласованность, изолированность и надежность), которые предъявляются к хранению информации в базах данных. Кроме того, PostgreSQL поддерживает полный набор индексных сервисов, функций и операторов для эффективного манипулирования данными JSON.

    Предыдущие версии PostgreSQL также поддерживали JSON, но при этом документы JSON сохранялись в текстовом формате, вследствие чего операции их записи и выборки выполнялись значительно дольше.

    PostgreSQL получила ряд новых функций:

    • Новый интерфейс API для декодирования данных из потока репликации открывает независимым разработчикам программного обеспечения путь к созданию более быстрых реплицирующих систем.
    • Новая функция Materialized Views, называемая «одновременным обновлением», позволяет на лету обновлять итоговые отчеты.
    • Функция Alter System Set поможет администраторам изменять файл конфигурации PostgreSQL непосредственно из командной строки SQL.

    Добавлен ряд функций и возможностей, среди которых динамические фоновые исполнители (Dynamic Background Workers), манипуляции с массивами и табличные функции, увеличена общая производительность.

    PostgreSQL 9.3

    В PostgreSQL 9.3 реализован ряд механизмов, позволяющих обмениваться информацией с другими базами и хранилищами данных. Модули Foreign Data Wrapper, которые появились еще в версии 9.1 и раньше позволяли только считывать данные из других систем, теперь предоставляют и возможность записи. Поддерживается работа как с реляционными таблицами, так и с полуструктурированной информацией из систем NoSQL. Для СУБД также создан драйвер, который позволяет связать с друг другом две разных копии самой PostgreSQL и обеспечивает ускоренное выполнение транзакций между ними.

    Среди других особенностей - расширенная поддержка JSON и возможность создания произвольных фоновых серверных модулей с неограниченным доступом к данным PostgreSQL. Пример - модуль Mongres, автоматически переводящий запросы MongoDB в формат PostgreSQL.

    Реализовано автоматическое обновление представлений и добавлена утилита, позволяющая в параллельном режиме выполнять резервное копирование больших баз. Приняты меры по повышению надежности СУБД. Функция Fast Failover позволяет переключить работу с мастер-базы на копию меньше чем за секунду. Появилась возможность проверки контрольных сумм страниц, помогающая диагностировать сбои жестких дисков.

    PostgreSQL 9.2

    PostgreSQL 9.0

    Разработчики открытой системы управления базами данных PostgreSQL выпустили в сентябре 2010 года первый релиз-кандидат системы Postrgesql 9.0, в котором реализованы все функции, заготовленные к выходу в девятой версии этой популярной СУБД. В свободном доступе на данный момент доступна бинарная версия предварительной сборки Postgresql 9.0 и все желающие могут протестировать новые возможности этой разработки перед тем, как переводить на нее производственные серверы, работающие с реальной информацией.

    Также в девятой версии появилась возможность репликации информации из бинарных логов, соответствующая механизму Hot Stanby Databases в Oracle Database. Не обошли вниманием разработчики и набирающие популярность облачные или SaaS -системы. Теперь СУБД оптимизирована для работы в среде виртуальных машин, поддерживает механизм быстрого клонирования данных, а также возможность репликации информации с единого мастер-сервера на большое количество (более сотни) подчиненных серверов. Также новый релиз полностью поддерживает возможности адресации памяти в 64-битных вариантах Windows .



    © 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows