Уроки по изучению c для arduino uno. Arduino для начинающих: пошаговые инструкции. Программирование и проекты Arduino: с чего начать

Уроки по изучению c для arduino uno. Arduino для начинающих: пошаговые инструкции. Программирование и проекты Arduino: с чего начать

29.05.2019

» представляет учебный курс «Arduino для начинающих». Серия представлена 10 уроками, а также дополнительным материалом. Уроки включают текстовые инструкции, фотографии и обучающие видео. В каждом уроке вы найдете список необходимых компонентов, листинг программы и схему подключения. Изучив эти 10 базовых уроков, вы сможете приступить к более интересным моделям и сборке роботов на основе Arduino. Курс ориентирован на новичков, чтобы к нему приступить, не нужны никакие дополнительные сведения из электротехники или робототехники.

Краткие сведения об Arduino

Что такое Arduino?

Arduino (Ардуино) — аппаратная вычислительная платформа, основными компонентами которой являются плата ввода-вывода и среда разработки. Arduino может использоваться как для создания автономных интерактивных объектов, так и подключаться к программному обеспечению, выполняемому на компьютере. Arduino как и относится к одноплатным компьютерам.

Как связаны Arduino и роботы?

Ответ очень прост — Arduino часто используется как мозг робота.

Преимущество плат Arduino перед аналогичными платформами — относительно невысокая цена и практически массовое распространение среди любителей и профессионалов робототехники и электротехники. Занявшись Arduino, вы найдете поддержку на любом языке и единомышленников, которые ответят на вопросы и с которым можно обсудить ваши разработки.

Урок 1. Мигающий светодиод на Arduino

На первом уроке вы научитесь подключать светодиод к Arduino и управлять его мигать. Это самая простая и базовая модель.

Светодиод — полупроводниковый прибор, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Урок 2. Подключение кнопки на Arduino

На этом уроке вы научитесь подключать кнопку и светодиод к Arduino.

При нажатой кнопке светодиод будет гореть, при отжатой – не гореть. Это также базовая модель.

Урок 3. Подключение потенциометра на Arduino

В этом уроке вы научитесь подключать потенциометр к Arduino.

Потенциометр — это резистор с регулируемым сопротивлением. Потенциометры используются как регуляторы различных параметров – громкости звука, мощности, напряжения и т.п. Это также одна из базовых схем. В нашей модели от поворота ручки потенциометра будет зависеть яркость светодиода.

Урок 4. Управление сервоприводом на Arduino

На этом уроке вы научитесь подключать сервопривод к Arduino.

Сервопривод – это мотор, положением вала которого можно управлять, задавая угол поворота.

Сервоприводы используются для моделирования различных механических движений роботов.

Урок 5. Трехцветный светодиод на Arduino

На этом уроке вы научитесь подключать трехцветный светодиод к Arduino.

Трехцветный светодиод (rgb led) — это три светодиода разных цветов в одном корпусе. Они бывают как с небольшой печатной платой, на которой расположены резисторы, так и без встроенных резисторов. В уроке рассмотрены оба варианта.

Урок 6. Пьезоэлемент на Arduino

На этом уроке вы научитесь подключать пьезоэлемент к Arduino.

Пьезоэлемент — электромеханический преобразователь, который переводит электричеcкое напряжение в колебание мембраны. Эти колебания и создают звук.

В нашей модели частоту звука можно регулировать, задавая соответствующие параметры в программе.

Урок 7. Фоторезистор на Arduino

На этом уроке нашего курса вы научитесь подключать фоторезистор к Arduino.

Фоторезистор — резистор, сопротивление которого зависит от яркости света, падающего на него.

В нашей модели светодиод горит только если яркость света над фоторезистором меньше определенной, эту яркость можно регулировать в программе.

Урок 8. Датчик движения (PIR) на Arduino. Автоматическая отправка E-mail

На этом уроке нашего курса вы научитесь подключать датчик движения (PIR) к Arduino, а также организовывать автоматическую отправку e-mail.

Датчик движения (PIR) — инфракрасный датчик для обнаружения движения или присутствия людей или животных.

В нашей модели при получении с PIR-датчика сигнала о движении человека Arduino посылает компьютеру команду отправить E-mail и отправка письма происходит автоматически.

Урок 9. Подключение датчика температуры и влажности DHT11 или DHT22

На этом уроке нашего вы научитесь подключать датчик температуры и влажности DHT11 или DHT22 к Arduino, а также познакомитесь с различиями в их характеристиках.

Датчик температуры и влажности — это составной цифровой датчик, состоящий из емкостного датчика влажности и термистора для измерения температуры.

В нашей модели Arduino считывает показания датчика и осуществляется вывод показаний на экран компьютера.

Урок 10. Подключение матричной клавиатуры

На этом уроке нашего курса вы научитесь подключать матричную клавиатуру к плате Arduino, а также познакомитесь с различными интересными схемами.

Матричная клавиатура придумана, чтобы упростить подключение большого числа кнопок. Такие устройства встречаются везде - в клавиатурах компьютеров, калькуляторах и так далее.

Урок 11. Подключение модуля часов реального времени DS3231

На последнем уроке нашего курса вы научитесь подключать модуль часов реального времени из семейства
DS к плате Arduino, а также познакомитесь с различными интересными схемами.

Модуль часов реального времени - это электронная схема, предназначенная для учета хронометрических данных (текущее время, дата, день недели и др.), представляет собой систему из автономного источника питания и учитывающего устройства.

Приложение. Готовые каркасы и роботы Arduino


Начинать изучать Arduino можно не только с самой платы, но и с покупки готового полноценного робота на базе этой платы — робота-паука, робота-машинки, робота-черепахи и т.п. Такой способ подойдет и для тех, кого электрические схемы не особо привлекают.

Приобретая работающую модель робота, т.е. фактически готовую высокотехнологичную игрушку, можно разбудить интерес к самостоятельному проектированию и робототехнике. Открытость платформы Arduino позволяет из одних и тех же составных частей мастерить себе новые игрушки.

Еще один вариант — покупка каркаса или корпуса робота: платформы на колесиках или гусенице, гуманоида, паука и т.п. В этом случае начинку робота придется делать самостоятельно.

Приложение. Мобильный справочник


– помощник для разработчиков алгоритмов под платформу Arduino, цель которого дать конечному пользователю возможность иметь при себе мобильный набор команд (справочник).

Приложение состоит из 3-х основных разделов:

  • Операторы;
  • Данные;
  • Функции.

Где купить Arduino


Наборы Arduino

Курс будет пополняться дополнительными уроками. Подпишитесь на нас

LEDs (light-emitting diodes) — по русски Светоизлучающий диод, используется во многих электронных устройствах. При прохождении через его кристалл ток вызывает свечение, которое усиливается оптическим колпачком-линзой. Его неоспоримые достоинства — быстрое включение, высокая прочность, длительный срок службы, экологичность. Как правило используется как световой индикатор включения — переключения, а также отображение режимов работы. Делятся светодиоды на две группы — Монохромные (одноцветные) и RGB (многоцветные).

Мы начнем наше знакомство с платой Arduino с самого простого опыта, который называется Мигающий Светодиод. В этом опыте мы попробуем заставить Arduino помигать нам приветственно светодиодом. Да, да, вы не ослышались, именно заставим, потому что мы обладаем всей полнотой власти над этой маленькой, но очень мощной платой под названием Arduino.

Для первого опыта вам понадобится:

Плата Arduino UNO — 1 шт.

Резистор 330ом. (можно использовать подходящие от 200 ом до 550 ом) — 1 шт.
На корпусе резистора нанесены цветовые полоски, они указывают его номинал, мощность и т.д*
На резисторе 330 ом. полоски должны быть Оранжевая, Оранжевая, Коричневая.

Светоизлучающий диод — 1 шт.

Макетная плата — 1 шт.

Соединительные провода.

Вы должны собрать проект по электрической принципиальной схеме на первом рисунке. В качестве подсказки и полноты понимания у вас есть следующий рисунок, который вам поможет разобраться куда, как и что подключается. Какме цветом брать провода, как правильно вставить детали.

Скачайте и распакуйте архив с программой урока, подсоедините ардуино к компьютеру с помощью USB шнура, запустите скетч урока № 1, дважды щелкнув по файлу lesson_01.ino , после этого у вас должна запустится среда программирования ArduinoIDE, в окне которой будет показан текст программы с многочисленными коментариями и пояснениями на русском языке. Внимательно прочитайте весь sketch от начала до конца, а затем загрузите программу в Arduino с помощью кнопки ЗАГРУЗИТЬ, или UPLOAD, в зависимости от языка программы.

Набор для экспериментов ArduinoKit
Код программы для опыта №1:

Что-то подобное должно получиться у вас:

В результате, после заливки программы в ардуино вы должны увидеть подмигивающий светодиод, который как бы говорит «Привет, Мир!». Если этого не произошло и светодиод не светится, вам необходимо проверить правильность соединения проводов. Правильность полярности светодиода +, -. Правильность полярности шин питания.

Всем удачи! Ждём ваши комментарии к ARDUINO УРОК 1 МИГАЮЩИЙ СВЕТОДИОД.

В этой статье я решал собрать полное пошаговое руководство для начинающих Arduino. Мы разберем что такое ардуино, что нужно для начала изучения, где скачать и как установить и настроить среду программирования, как устроен и как пользоваться языком программирования и многое другое, что необходимо для создания полноценных сложных устройств на базе семейства этих микроконтроллеров.

Тут я постараюсь дать сжатый минимум для того, что бы вы понимали принципы работы с Arduino. Для более полного погружения в мир программируемых микроконтроллеров обратите внимание на другие разделы и статьи этого сайта. Я буду оставлять ссылки на другие материалы этого сайта для более подробного изучения некоторых аспектов.

Что такое Arduino и для чего оно нужно?

Arduino — это электронный конструктор, который позволяет любому человеку создавать разнообразные электро-механические устройства. Ардуино состоит из программной и аппаратной части. Программная часть включает в себя среду разработки (программа для написания и отладки прошивок), множество готовых и удобных библиотек, упрощенный язык программирования. Аппаратная часть включает в себя большую линейку микроконтроллеров и готовых модулей для них. Благодаря этому, работать с Arduino очень просто!

С помощью ардуино можно обучаться программированию, электротехнике и механике. Но это не просто обучающий конструктор. На его основе вы сможете сделать действительно полезные устройства.
Начиная с простых мигалок, метеостанций, систем автоматизации и заканчивая системой умного дома, ЧПУ станками и беспилотными летательными аппаратами. Возможности не ограничиваются даже вашей фантазией, потому что есть огромное количество инструкций и идей для реализации.

Стартовый набор Arduino

Для того что бы начать изучать Arduino необходимо обзавестись самой платой микроконтроллера и дополнительными деталями. Лучше всего приобрести стартовый набор Ардуино, но можно и самостоятельно подобрать все необходимое. Я советую выбрать набор, потому что это проще и зачастую дешевле. Вот ссылки на лучшие наборы и на отдельные детали, которые обязательно пригодятся вам для изучения:

Базовый набор ардуино для начинающих: Купить
Большой набор для обучения и первых проектов: Купить
Набор дополнительных датчиков и модулей: Купить
Ардуино Уно самая базовая и удобная модель из линейки: Купить
Беспаечная макетная плата для удобного обучения и прототипирования: Купить
Набор проводов с удобными коннекторами: Купить
Комплект светодиодов: Купить
Комплект резисторов: Купить
Кнопки: Купить
Потенциометры: Купить

Среда разработки Arduino IDE

Для написания, отладки и загрузки прошивок необходимо скачать и установить Arduino IDE. Это очень простая и удобная программа. На моем сайте я уже описывал процесс загрузки, установки и настройки среды разработки. Поэтому здесь я просто оставлю ссылки на последнюю версию программы и на

Версия Windows Mac OS X Linux
1.8.2

Язык программирования Ардуино

Когда у вас есть на руках плата микроконтроллера и на компьютере установлена среда разработки, вы можете приступать к написанию своих первых скетчей (прошивок). Для этого необходимо ознакомиться с языком программирования.

Для программирования Arduino используется упрощенная версия языка C++ с предопределенными функциями. Как и в других Cи-подобных языках программирования есть ряд правил написания кода. Вот самые базовые из них:

  • После каждой инструкции необходимо ставить знак точки с запятой (;)
  • Перед объявлением функции необходимо указать тип данных, возвращаемый функцией или void если функция не возвращает значение.
  • Так же необходимо указывать тип данных перед объявлением переменной.
  • Комментарии обозначаются: // Строчный и /* блочный */

Подробнее о типах данных, функциях, переменных, операторах и языковых конструкциях вы можете узнать на странице по Вам не нужно заучивать и запоминать всю эту информацию. Вы всегда можете зайти в справочник и посмотреть синтаксис той или иной функции.

Все прошивки для Arduino должны содержать минимум 2 функции. Это setup() и loop().

Функция setup

Для того что бы все работало, нам надо написать скетч. Давайте сделаем так, что бы светодиод загорался после нажатия на кнопку, а после следующего нажатия гас. Вот наш первый скетч:

// переменные с пинами подключенных устройств int switchPin = 8; int ledPin = 11; // переменные для хранения состояния кнопки и светодиода boolean lastButton = LOW; boolean currentButton = LOW; boolean ledOn = false; void setup() { pinMode(switchPin, INPUT); pinMode(ledPin, OUTPUT); } // функция для подавления дребезга boolean debounse(boolean last) { boolean current = digitalRead(switchPin); if(last != current) { delay(5); current = digitalRead(switchPin); } return current; } void loop() { currentButton = debounse(lastButton); if(lastButton == LOW && currentButton == HIGH) { ledOn = !ledOn; } lastButton = currentButton; digitalWrite(ledPin, ledOn); }

// переменные с пинами подключенных устройств

int switchPin = 8 ;

int ledPin = 11 ;

// переменные для хранения состояния кнопки и светодиода

boolean lastButton = LOW ;

boolean currentButton = LOW ;

boolean ledOn = false ;

void setup () {

pinMode (switchPin , INPUT ) ;

pinMode (ledPin , OUTPUT ) ;

// функция для подавления дребезга

boolean debounse (boolean last ) {

boolean current = digitalRead (switchPin ) ;

if (last != current ) {

delay (5 ) ;

current = digitalRead (switchPin ) ;

return current ;

void loop () {

currentButton = debounse (lastButton ) ;

if (lastButton == LOW && currentButton == HIGH ) {

ledOn = ! ledOn ;

lastButton = currentButton ;

digitalWrite (ledPin , ledOn ) ;

В этом скетче я создал дополнительную функцию debounse для подавления дребезга контактов. О дребезге контактов есть на моем сайте. Обязательно ознакомьтесь с этим материалом.

ШИМ Arduino

Широтно-импульсная модуляция (ШИМ) — это процесс управления напряжением за счет скважности сигнала. То есть используя ШИМ мы можем плавно управлять нагрузкой. Например можно плавно изменять яркость светодиода, но это изменение яркости получается не за счет уменьшения напряжения, а за счет увеличения интервалов низкого сигнала. Принцип действия ШИМ показан на этой схеме:

Когда мы подаем ШИМ на светодиод, то он начинает быстро зажигаться и гаснуть. Человеческий глаз не способен увидеть это, так как частота слишком высока. Но при съемке на видео вы скорее всего увидите моменты когда светодиод не горит. Это случится при условии что частота кадров камеры не будет кратна частоте ШИМ.

В Arduino есть встроенный широтно-импульсный модулятор. Использовать ШИМ можно только на тех пинах, которые поддерживаются микроконтроллером. Например Arduino Uno и Nano имеют по 6 ШИМ выводов: это пины D3, D5, D6, D9, D10 и D11. В других платах пины могут отличаться. Вы можете найти описание интересующей вас платы в

Для использования ШИМ в Arduino есть функция Она принимает в качестве аргументов номер пина и значение ШИМ от 0 до 255. 0 — это 0% заполнения высоким сигналом, а 255 это 100%. Давайте для примера напишем простой скетч. Сделаем так, что бы светодиод плавно загорался, ждал одну секунду и так же плавно угасал и так до бесконечности. Вот пример использования этой функции:

// Светодиод подключен к 11 пину int ledPin = 11; void setup() { pinMode(ledPin, OUTPUT); } void loop() { for (int i = 0; i < 255; i++) { analogWrite(ledPin, i); delay(5); } delay(1000); for (int i = 255; i > 0; i--) { analogWrite(ledPin, i); delay(5); } }

// Светодиод подключен к 11 пину

int ledPin = 11 ;

void setup () {

pinMode (ledPin , OUTPUT ) ;

void loop () {

for (int i = 0 ; i < 255 ; i ++ ) {

analogWrite (ledPin , i ) ;

delay (5 ) ;

delay (1000 ) ;

for (int i = 255 ; i > 0 ; i -- ) {

Наверное, многие слышали о такой замечательной платформе, но из-за плохого знания электроники или программирования многие решат обойти arduino стороной. Да платформа достаточно сложная, но разобраться можно, главное желание. Я сам долго не решался изучить данную платформу, но в один прекрасный день, понял, что она бы могла облегчить мне жизнь…
В интернете очень много информации об arduino, но без практики никакая теория не поможет, по этому я решил купить данный набор, но забегу вперед, что все таки дешевле все компоненты купить самостоятельно, не набором, а архивы с инструкциями и программами (скетчами) я выложил ниже.
Почему я взял данный набор, ведь выбора в Китае много? Раньше ардуино было для меня как что-то заоблачное и не понятное и выбирал только из-за количества уроков, по этому и выбрал данный набор, кстати подобный уже обозревал .

Покупал я напрямую с тао:

Набор пришел в пластиковом кейсе, заклеенном скотчем, видимо что бы ничего не вытащили из коробки (скотч я уже порвал):


Что же там в коробке?

Комплектация:



- 1х плата arduino uno, возможно даже оригинал
- 1х LCD дисплей 16 символами на 2 строки с i2c платой


- 15х светодиодов: 5 шт. красного цвета, 5 шт. синего цвета и 5 шт. оранжевого цвета


- 3х фоторезистора
- 1х ИК приемник
- 1х датчик пламени
- 2х датчика вибрации
- 1х термодатчик
- 4х кнопки
- 2х пьезоэлемента


- цифровой светодиодный дисплей на 1 цифру
- цифровой светодиодный дисплей на 4 цифры
- светодиодная матрица 8х8


- 8х постоянный резистор на 220 Ом
- 5х постоянный резистор на 1 кОм
- 5х постоянный резистор на 10 кОм


- 1х резистор переменного сопротивления(потенциометр) на 50 кОм


- 1х большая макетная площадка


- 1x DuPont кабель мама-папа 30 разноцветных проводов


- 30х соединительных проводов для макетной площадки папа-папа


- 1х USB кабель


- 1х RFID плата
- 1х RFID карта
- 1х RFID на ключи


- 1x ИК пульт
- 1x микрофонный модуль
- 1x модель кнопочной площадка 4х4
- 1x реле
- 1x модуль часов
- 1x модуль драйвера для мотора
- 1x модуль датчика температуры и влажности
- 1x модуль джойстика
- 1x модуль RGB светодиода
- 1x модуль датчика влажности
- 1x кабель питания для кроны


- 1x сервопривод
- 1x мотор с редуктором


- 1x сдвиговый регистр 74НС595N
Вот так выглядит все в сборе:



Когда я получил набор, то сразу принялся искать инструкции, но внутри коробки ничего не обнаружил, подумал, что китаец обманул и уже хотел с ним ругаться, но почитал описание лота и там была ссылка со всеми инструкциями и программами: (пароль:22cd)
Но китайскими программами лучше не пользоваться, по тому программу для программирования arduino лучше скачать с официального сайта:
А вот собраны мной инструкции, программы, скетчи найденные в интернете и мои скетчи, которые пригодились в освоении arduino.

Начало

Рекомендую для начала прочитать pdf книгу на русском языке: Руководство по освоению Arduino - 2012, которая лежит на моей . Там много полезного написано и понятным языком, только мало уроков.
В архиве Modkit_Desktop_WIN32_Kickstarter_v2.zip находится программа для визуального программирования.
В архиве Arduino - китайщина.rar находится китайская инструкция, китайские скетчи, библиотеки, но там много ошибок.
В архиве Arduino - программа.rar находится программа arduino с библиотеками, которые мне пригодились в освоении ардуино.
В архиве arduino-master - много уроков.zip имеется достаточно много уроков, схем, библиотек с хорошим описанием на англ. Причем большую часть из этого архива «стянуто» китайцами.
В архиве Мои скетчи.rar находятся мои проекты, хоть их и 34, но не все китайские уроки я выполнял, некоторые подправлял и самый последний проект я сделал самостоятельно. Номера моих скетчей не совпадают с номерами обозреваемых уроков, но все мои скетчи подписаны в транслите и думаю всем будет понятно.
Начинаем!
Урок №1 - мигание светодиода
Для этого урока нам понадобятся вот такие детали:


- 2 провода (далее количество проводов я указывать не буду),
- светодиод,
- резистор на 220Ом,
- макетная площадка и плата arduino uno
Подключаем:


И получаем:
Урок №2 - подключение 8 светодиодов - бегущие огни
Для этого урока нужно:
- 8 светодиодов,
- 8 резисторов на 220 Ом,

Я немного не правильно подключил, поставил 1 резистор на массу и подвел ко всем светодиодам:




Результат:
Урок №3 - изменение яркости светодиода с помощью переменного резистора
Нам нужно:
- светодиод,
- переменный резистор,
- резистор на 220Ом,
- провода, макетная площадка и arduino


Решил в этот раз не подключать резистор к светодиоду, но если подключать «на постоянку», то сопротивление на светодиод нужно поставить, иначе светодиод сгорит быстро.




Результат:
Урок №4 - бегущие огни из 6 светодиодов
Необходимо:
- 6 светодиодов,
- резистор на 220Ом
- провода, макетная площадка и arduino


Получилось так:




Результат:
Урок №5 - подключение RGB светодиода
Понадобится:
- модуль RGB
- провода, макетная площадка и arduino


Получилось так:




Результат:
Урок №6 - подключение пьезоэлемента
Детали:
- пьезоэлемент
- провода, макетная площадка и arduino


Получилось так:


Результат:

С музыкой:

Урок №8 - включение светодиода с кнопки
Детали:
- кнопка
- светодиод
- резисторы на 220 Ом и 10 кОм
- провода, макетная площадка и arduino


Получилось так:


Результат:
Урок №8.1 - вкл/выкл. светодиода с кнопки
Детали:
- светодиод
- 2 кнопки
- резистор на 220 Ом
- 2 резистора на 10кОм
- провода, макетная площадка и arduino


Получилось так




Результат:
Урок №8.2 - изменение яркости светодиода с кнопки
Схема подключения идентична уроку 8.1, только скетч другой и результат:
Урок №9 - сервопривод
Детали:
- сервопривод
- провода, макетная площадка и arduino


Получилось так:


Результат:
Урок №10 - подключение сдвигового регистра 74HC595
Детали:
- 8 светодиодов
- сдвиговый регистр 74HC595
- 8 резисторов на 220 Ом
- провода, макетная площадка и arduino


Получилось так:

Урок №11 - изменение яркости светодиода с помощью фоторезитора
Детали:
- фоторезитор
- светодиод
- резитор на 220 Ом и на 10кОм
- провода, макетная площадка и arduino


Получилось так:


Результат:
Урок №12 - вольтметр
Детали:
- батарейка
- резистор 10 кОм
- провода, макетная площадка и arduino
Получилось так:




Урок №13 - измерение температуры
Детали:
- датчик температуры
- провода, макетная площадка и arduino
Получилось так:


Результат отображается в «мониторе протра»:


Если нагреть датчик зажигалкой, температура изменяется:

Урок №13.1 - изменение температуры - визуальное отображение
Детали:
- датчик температуры
- 3 светодиода
- резистора 220 Ом
- провода, макетная площадка и arduino
Получилось так:


Результат:
Урок №14 - подключение цифрового светодиодного дисплея
Детали:
- 6 резистров 220 Ом
- цифровой светодиодный дисплей
- провода, макетная площадка и arduino
Получилось так:


Результат китайского скетча:

Результат моего переделанного скетча:

Урок №14 - подключение цифрового светодиодного дисплея на 4 цифры
Детали:
- светодиодная панель на 4 цифры
- провода, макетная площадка и arduino
Получилось так:


Результат - секундомер:
Урок №15 - подключение светодиодной матрицы 8х8
Детали:
- светодиодная матрица 8х8
- провода и arduino
Получилось так:




Результат моего скетча:
Урок №16 - подключение датчика влажности
Детали:
- датчик влажности
- светодиод (я подключил RGB модуль к 1 светодиоду)
- провода и arduino
Получилось так:


Результат:
Урок №17 - измерение температуры и влажности
Детали:
- датчик влажности и температуры
- провода и arduino
Получилось так:


Результат отображается в «мониторе протра»:
Урок №18 - подключение модуля реле
Детали:
- модуль реле
- светодиод
- резистор на 220Ом
- провода, макетная площадка и arduino
Получилось так:


Результат:
Урок №19 - подключение LCD дисплея 16х2
Детали:
- дисплей LCD1602
- провода и arduino
Получилось так:


Результат:

Урок №20 - подключение двигателя
Детали:
- модуль драйвера для мотора
- мотор с редуктором
- провода и arduino
Получилось так:


Результат:
Урок №21 - Включение/выключение светодидодов с помощью пульта
Детали:
- ИК пульт
- ИК приемник
- 6 светодиодов
- 6 резисторов 220Ом
- провода, макетная площадка и arduino


Получилось так:


Результат:
Урок №22 - Подключение джойстика
Детали:
- джойстик
- провода и arduino
Результат отображается в «мониторе протра»:
Урок №23 - Подключение клавиатуры 4х4
Детали:
- клавиатура
- провода и arduino
Результат отображается в «мониторе протра»:
Урок №24 - Подключение RFID
Детали:
- модуль RFID
- провода и arduino
Получилось так:


Результат отображается в «мониторе протра» - чтение дампа карты:


Результат отображается в «мониторе протра» - чтение брелка:


Результат отображается в «мониторе протра» - пытался прочитать УЭК, банковсвкую карту с payWave и транспортную карту:

Уроков у меня получилось всего 24, остальные я не стал освещать в обзоре, хотя сам их собирал и проверял, как мне показалось, они не интересные для обозревания.

Что бы закрепить результат я решил собрать цифровой термометр и написать программу, хотя сначала хотел собрать измеритель влажности и температуры, но из-за неправельного подключения этот модуль я «убил», по этому пришлось сделать только измерение температуры.

Домашнее задание - цифровой термометр
Детали:
- датчик температуры
- LCD дисплей
- провода, макетная площадка и arduino
Получлось так:


Осталось самое сложное объединить 2 скетча и еще что бы все это работало, получился вот такой скетч:

Цифровой термометр

#include #include LiquidCrystal_I2C lcd(0x27,16,2); int potPin = 0; // пин куда подключен датчик float dat = 0; // переменная для температуры void setup() { lcd.init(); lcd.backlight(); lcd.begin(16, 2); lcd.print("S"); delay(300); lcd.print("p"); delay(300); lcd.print("e"); delay(300); lcd.print("c"); delay(300); lcd.print("i"); delay(300); lcd.print("a"); delay(300); lcd.print("l"); delay(300); lcd.print("l"); delay(300); // ждем 0.5 секунды lcd.print("y"); delay(300); // ждем 0.5 секунды lcd.print(" f"); delay(300); // ждем 1 секунду lcd.print("o"); delay(300); // ждем 1 секунду lcd.print("r"); delay(700); lcd.setCursor(0, 1); lcd.print("h"); delay(300); lcd.print("t"); delay(300); lcd.print("t"); delay(300); lcd.print("p"); delay(300); lcd.print(":"); delay(300); lcd.print("/"); delay(300); lcd.print("/"); delay(300); lcd.print("m"); delay(300); lcd.print("y"); delay(300); lcd.print("s"); delay(300); lcd.print("k"); delay(300); lcd.print("u"); delay(300); lcd.print("."); delay(300); lcd.print("r"); delay(300); lcd.print("u"); delay(300); lcd.clear(); //очистка экрана delay(1000); lcd.setCursor(0, 0); lcd.print("Specially for"); lcd.setCursor(0, 1); lcd..clear(); //очистка экрана delay(300); lcd.setCursor(0, 0); lcd.print("Specially for"); lcd.setCursor(0, 1); lcd..clear(); //очистка экрана delay(300); lcd.setCursor(0, 0); lcd.print("Specially for"); lcd.setCursor(0, 1); lcd..clear(); } void loop() { lcd.init(); // initialize the lcd lcd.clear(); //очистка экрана // считываем и вычисляем температуру dat = (5.0 * analogRead(potPin) * 100.0) / 1024.0; lcd.backlight(); lcd.setCursor(0, 0); // устанавливаем курсор в 0-ом // столбце, 1 строке (начинается с 0) lcd.print("Temperatura"); lcd.setCursor(0, 1); lcd.print(" "); lcd.print(dat); // выводим текущую температуру lcd.print(""C"); delay(5*500); // задержка перед повторением измерений }


Слегка подсматривал
Результат:

Теперь надо проверить погрешность:


Как видно погрешность очень маленькая, хотя возможно метеостанция и моя конструкция оба термометра врут.

Зачем я все это затеял?
Хочу автоматизировать пивоварение, пока все еще в далеком проекте.

+

Их множество, с помощью arduino можно создать множество проектов, практически под любые цели.
Полно инструкций в интернете.
С помощью данного набора можно легко изучить arduino - инструкции в помощь.

-

Цена мне кажется великовата
В китайской инструкции очень много ошибок, например урок от одного проекта, скетч совершенно от другого, а схема от третьего

Вывод:

Ардуино мне понравился, буду пробовать изобретать что-нибудь более интересное и сложное, а всем начинающим я рекомендую покупать arduino не набором, а отдельными модулями.

На этом все, надеюсь мой обзор показался не очень нудным.

Спасибо за внимание!

Планирую купить +307 Добавить в избранное Обзор понравился +199 +551

Изучение микроконтроллеров кажется чем-то сложным и непонятным? До появления Арудино - это было действительно не легко и требовало определенный набор программаторов и прочего оборудования.

Это своего рода электронный конструктор. Изначальная задача проекта - это позволить людям легко обучаться программированию электронных устройств, при этом уделяя минимальное время электронной части.

Сборка сложнейших схем и соединение плат может осуществляться без паяльника, а с помощью перемычек с разъёмными соединениями «папа» и «мама». Так могут подключаться как навесные элементы, так и платы расширения, которые на лексиконе ардуинщиков зовут просто «Шилды» (shield).

Какую первую плату Arduino купить новичку?

Базовой и самой популярной платой считается . Эта плата размером напоминает кредитную карту. Довольно крупная. Большинство шилдов которые есть в продаже идеально подходят к ней. На плате для подключения внешних устройств расположены гнезда.

В отечественных магазинах на 2017 год её цена порядка 4-5 долларов. На современных моделях её сердцем является Atmega328.

Изображение платы ардуино и расшифровка функций каждого вывода, Arduino UNO pinout

Микроконтроллер на данной плате это длинна микросхема в корпусе DIP28, что говорит о том, что у него 28 ножек.

Следующая по популярности плата, стоит почти в двое дешевле предыдущей - 2-3 доллара. Это плата . Актуальные платы построены том же Atmega328, функционально они аналогичны с UNO, различия в размерах и решении согласования с USB, об этом позже подробнее. Еще одним отличием является то, что для подключения к плате устройств предусмотрены штекера, в виде иголок.

Количество пинов (ножек) этой платы совпадает, но вы можете наблюдать что микроконтроллер выполнен в более компактном корпусе TQFP32, в корпусе добавлены ADC6 и ADC7, другие две «лишних» ножки дублируют шину питания. Её размеры довольно компактные - примерно, как большой палец вашей руки.

Третья по популярности плата - это , на ней нет USB порта для подключения к компьютеру, как осуществляется связь я расскажу немного позже.

Это самая маленькая плата из всех рассмотренных, в остальном она аналогична предыдущим двум, а её сердцем является по-прежнему Atmega328. Другие платы рассматривать не будем, так как это статья для начинающих, да и сравнение плат - это тема отдельной статьи.

В верхней части схема подключения USB-UART, пин «GRN» - разведен на цепь сброса микроконтроллера, может называться по иному, для чего это нужно вы узнаете далее.

Если UNO удобна для макетирования, то Nano и Pro Mini удобны для финальных версий вашего проекта, потому что занимают мало места.

Как подключить Arduino к компьютеру?

Arduino Uno и Nano подключаются к компьютеру по USB. При этом нет аппаратной поддержки USB порта, здесь применено схемное решение преобразования уровней, обычно называемое USB-to-Serial или USB-UART (rs-232). При этом в микроконтроллер прошит специальный Arduino загрузчик, который позволяет прошиваться по этим шинам.

В Arduino Uno реализована эта вязь на микроконтроллере с поддержкой USB - ATmega16U2 (AT16U2). Получается такая ситуация, что дополнительный микроконтроллер на плате нужен для прошивки основного микроконтроллера.

В Arduino Nano это реализовано микросхемой FT232R, или её аналогом CH340. Это не микроконтроллер — это преобразователь уровней, этот факт облегчает сборку Arduino Nano с нуля своими руками.

Обычно драйвера устанавливаются автоматически при подключении платы Arduino. Однако, когда я купил китайскую копию Arduino Nano, устройство было опознано, но оно не работало, на преобразователе была наклеена круглая наклейка с данными о дате выпуска, не знаю нарочно ли это было сделано, но отклеив её я увидел маркировку CH340.

До этого я не сталкивался с таким и думал, что все USB-UART преобразователи собраны на FT232, пришлось скачать драйвера, их очень легко найти по запросу «Arduino ch340 драйвера». После простой установки - всё заработало!

Через этот же USB порт может и питаться микроконтроллер, т.е. если вы подключите его к адаптеру от мобильного телефона - ваша система будет работать.

Что делать если на моей плате нет USB?

Плата Arduino Pro Mini имеет меньшие габариты. Это достигли тем что убрали USB разъём для прошивки и тот самый USB-UART преобразователь. Поэтому его нужно докупить отдельно. Простейший преобразователь на CH340 (самый дешевый), CPL2102 и FT232R, продаётся стоит от 1 доллара.

При покупке обратите внимание на какое напряжение рассчитан этот переходник. Pro mini бывает в версиях 3.3 и 5 В, на преобразователях часто расположен джампер для переключения напряжения питания.

При прошивке Pro Mini, непосредственно перед её началом необходимо нажимать на RESET, однако в преобразователях с DTR это делать не нужно, схема подключения на рисунке ниже.

Стыкуются они специальными клеммами «Мама-Мама» (female-female).

Собственно, все соединения можно сделать с помощью таких клемм (Dupont), они бывают как с двух сторон с гнездами, так и со штекерами, так и с одной стороны гнездо, а с другой штекер.

Как писать программы для Arduino?

Для работы со скетчами (название прошивки на языке ардуинщиков), есть специальная интегрированная среда для разработки Arduino IDE, скачать бесплатно её можно с официального сайта или с любого тематического ресурса, с установкой проблем обычно не возникает.

Так выглядит интерфейс программы. Писать программы можно на специально разработанном для ардуино упрощенном языке C AVR, по сути это набор библиотек, который называют Wiring, а также на чистом C AVR. Использование которого облегчает код и ускоряет его работу.

В верхней части окна присутствует привычное меню, где можно открыть файл, настройки, выбрать плату, с которой вы работаете (Uno, Nano и много-много других) а также открыть проекты с готовыми примерами кода. Ниже расположен набор кнопок для работы с прошивкой, назначение клавиш вы увидите на рисунке ниже.

В нижней части окна - область для вывода информации о проекте, о состоянии кода, прошивки и наличии ошибок.

Основы программирования в Arduino IDE

В начале кода нужно объявить переменные и подключить дополнительные библиотеки, если они имеются, делается это следующим образом:

#include biblioteka.h; // подключаем библиотеку с названием “Biblioteka.h”

#define peremennaya 1234; // Объявляем переменную со значением 1234

Команда Define дают компилятору самому выбрать тип переменной, но вы можете его задать вручную, например, целочисленный int, или с плавающей точкой float.

int led = 13; // создали переменную “led” и присвоили ей значение «13»

Программа может определять состояние пина, как 1 или 0. 1 -это логическая единица, если пин 13 равен 1, то напряжение на его физической ножке будет равняться напряжению питания микроконтроллера (для ардуино UNO и Nano - 5 В)

Запись цифрового сигнала осуществляется командой digitalWrite (пин, значение), например:

digitalWrite(led, high); //запись единицы в пин 13(мы его объявили выше) лог. Единицы.

Как вы могли понять обращение к портам идёт по нумерации на плате, соответствующей цифрой. Вот пример аналогичного предыдущему коду:

digitalWrite (13, high); // устанавливаем вывод 13 в едиицу

Часто востребованная функция задержки времени вызывается командой delay(), значение которой задаётся в миллисекундах, микросекунды достигаются с помощью

delayMicroseconds() Delay (1000); //микроконтроллер будет ждать 1000 мс (1 секунду)

Настройки портов на вход и выход задаются в функции void setup{}, командой:

pinMode(NOMERPORTA, OUTPUT/INPUT); // аргументы - название переменной или номер порта, вход или выход на выбор

Понимаем первую программу «Blink»

В качестве своеобразного «Hello, world» для микроконтроллеров является программа мигания светодиодом, давайте разберем её код:

В начале командой pinMode мы сказали микроконтроллеру назначить порт со светодиодом на выход. Вы уже заметили, что в коде нет объявления переменной “LED_BUILTIN”, дело в том, что в платах Uno, Nano и других с завода к 13 выводу подключен встроенный светодиод и он распаян на плате. Он может быть использован вами для индикации в ваших проектах или для простейшей проверки ваших программ-мигалок.

Далее мы установили вывод к которому подпаян светодиод в единицу (5 В), следующая строка заставляет МК подождать 1 секунду, а затем устанавливает пин LED_BUILTIN в значение нуля, ждет секунду и программа повторяется по кругу, таким образом, когда LED_BUILTIN равен 1 - светодиод(да и любая другая нагрузка подключенная к порту) включен, когда в 0 - выключен.

Читаем значение с аналогового порта и используем прочитанные данные

Микроконтроллер AVR Atmega328 имеет встроенный 10 битный аналогово цифровой преобразователь. 10 битный АЦП позволяет считывать значение напряжение от 0 до 5 вольт, с шагом в 1/1024 от всего размаха амплитуды сигнала (5 В).

Чтобы было понятнее рассмотрим ситуацию, допустим значение напряжения на аналоговом входе 2.5 В, значит микроконтроллер прочитает значение с пина «512», если напряжение равно 0 - «0», а если 5 В - (1023). 1023 - потому что счёт идёт с 0, т.е. 0, 1, 2, 3 и т.д. до 1023 - всего 1024 значения.

Вот как это выглядит в коде, на примере стандартного скетча «analogInput»

int sensorPin = A0;

int ledPin = 13;

int sensorValue = 0;

pinMode(ledPin, OUTPUT);

sensorValue = analogRead(sensorPin);

digitalWrite(ledPin, HIGH);

delay(sensorValue);

digitalWrite(ledPin, LOW);

delay(sensorValue);

Объявляем переменные:

    Ledpin - самостоятельно назначаем пин со встроенным светодиодом на выход и даём индивидуальное имя;

    sensorPin - аналоговый вход, задаётся соответственно маркировке на плате: A0, A1, A2 и т.д.;

    sensorValue - переменная для хранения целочисленного прочитанного значения и дальнейшей работы с ним.

Код работает так: sensorValue сохраняем прочитанное с sensorPin аналоговое значение (команда analogRead). - здесь работа с аналоговым сигналом заканчивается, дальше всё как в предыдущем примере.

Записываем единицу в ledPin, светодиод включается и ждем время равное значению sensorValue, т.е. от 0 до 1023 миллисекунд. Выключаем светодиод и снова ждем этот период времени, после чего код повторяется.

Таким образом положением потенциометра мы задаем частоту миганий светодиода.

Функция map для Арудино

Не все функции для исполнительных механизмов (мне ни одной не известно) в качестве аргумента поддерживают «1023», например, сервопривод ограничен углом поворота, т.е на пол оборотоа (180 градуов) (пол оборота) сервомоторчика максимальный аргумент функции равен «180»

Теперь о синтаксисе: map (значение которое мы переводим, минимальная величина входного, максимальная величина входного, минимальная выходного, максимальная выходного значения).

В коде это выглядит так:

(map(analogRead(pot), 0, 1023, 0, 180));

Мы считываем значение с потенциометра (analogRead(pot))от 0 до 1023, а на выходе получаем числа от 0 до 180

Значения карты величин:

На практике применим это к работе коду того-же сервопривода, взгляните на код с Arduino IDE, если вы внимательно читали предыдущие разделы, то он пояснений не требует.

И схема подключения.

Выводы Ардуино - очень удобное средство для обучения работы с микроконтроллерами. А если использовать чистый C AVR, или как его иногда называют «Pure C» - вы значительно уменьшите вес кода, и его больше поместиться в память микроконтроллера, в результате вы получите отличную отладочную плату заводского исполнения с возможностью прошивки по USB.

Мне нравится ардуино. Жаль, что её многие опытные программисты микроконтроллеров безосновательно ругают, что она слишком упрощена. Упрощен, в принципе, только язык, но никто не заставляет пользоваться именно им, плюс вы можете прошить микроконтроллер через ICSP разъём, и залить туда тот код, который вам хочется, без всяких ненужных Вам бутлоадеров.

Для тех, кто хочет проиграться с электроникой, как продвинутый конструктор - отлично подойдёт, а для опытных программистов как плата, не требующая сборки, тоже станет полезной!

Еще больше информации про Ардуино и особенности его использования в различных схемах смотрите в электронной книге - .



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows