Функции активации. Функции активации нейросети: сигмоида, линейная, ступенчатая, ReLu, tahn

Функции активации. Функции активации нейросети: сигмоида, линейная, ступенчатая, ReLu, tahn

02.08.2019

Для того, чтобы определиться с условными обозначениями, приведем ниже следующую модель нейрона:

Функция активации (активационная функция, функция возбуждения) – функция, вычисляющая выходной сигнал искусственного нейрона. В качестве аргумента принимает сигнал , получаемый на выходе входного сумматора . Наиболее часто используются следующие функции активации.

1. Единичный скачок или жесткая пороговая функция

Простая кусочно-линейная функция. Если входное значение меньше порогового, то значение функции активации равно минимальному допустимому, иначе – максимально допустимому.

2. Линейный порог или гистерезис

Несложная кусочно-линейная функция. Имеет два линейных участка, где функция активации тождественно равна минимально допустимому и максимально допустимому значению и есть участок, на котором функция строго монотонно возрастает.

3. Сигмоидальная функция или сигмоид

Монотонно возрастающая всюду дифференцируемая -образная нелинейная функция с насыщением. Сигмоид позволяет усиливать слабые сигналы и не насыщаться от сильных сигналов. Гроссберг (1973 год) обнаружил, что подобная нелинейная функция активации решает поставленную им дилемму шумового насыщения.

Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей, которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы?

Примером сигмоидальной функции активации может служить логистическая функция

где – параметр наклона сигмоидальной функции активации. Изменяя этот параметр, можно построить функции с различной крутизной.

Еще одним примером сигмоидальной функции активации является гиперболический тангенс , задаваемая следующим выражением:

где – это также параметр, влияющий на наклон сигмоидальной функции.

В заключение отметим, что функции активации типа единичного скачка и линейного порога встречаются очень редко и, как правило, используются на учебных примерах. В практических задач почти всегда применяется сигмоидальная функция активации.

OUT = K (NET),

где К - постоянная, пороговой функцией

OUT = 1, если NET > T, OUT = 0 в остальных случаях,

где Т - некоторая постоянная пороговая величина, или же функцией, более точно моделирующей нелинейную передаточную характеристику биологического нейрона и представляющей нейронной сети большие возможности.

Рис. 3.

На рис. 3 блок, обозначенный F, принимает сигнал NET и выдает сигнал OUT. Если блок F сужает диапазон изменения величины NET так, что при любых значениях NET значения OUT принадлежат некоторому конечному интервалу, то F называется «сжимающей» функцией. В качестве «сжимающей» функции часто используется логистическая или «сигмоидальная» (S-образная) функция, показанная на рис.4а. Эта функция математически выражается как

F(x) = 1/(1 + е -x).

Таким образом,

По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1973) обнаружил, что подобная нелинейная характеристика решает поставленную им дилемму шумового насыщения. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Центральная область логистической функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала.


Рис.

Другой широко используемой активационной функцией является гиперболический тангенс. По форме она сходна с логистической функцией и часто используется биологами в качестве математической модели активации нервной клетки. В качестве активационной функции искусственной нейронной сети она записывается следующим образом:


Рис.

Подобно логистической функции гиперболический тангенс является S-образной функцией, но он симметричен относительно начала координат, и в точке NET = 0 значение выходного сигнала OUT равно нулю (см. рис. 4б). В отличие от логистической функции гиперболический тангенс принимает значения различных знаков, что оказывается выгодным для ряда сетей.

Рассмотренная простая модель искусственного нейрона игнорирует многие свойства своего биологического двойника.

Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, она не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Несмотря на эти ограничения, сети, построенные из этих нейронов, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что в модели верно схвачены важнейшие черты биологического нейрона.

Что делает искусственный нейрон? Простыми словами, он считает взвешенную сумму на своих входах, добавляет смещение (bias) и решает, следует это значение исключать или использовать дальше (да, функция активации так и работает, но давайте пойдем по порядку).

Функция активации определяет выходное значение нейрона в зависимости от результата взвешенной суммы входов и порогового значения.

Рассмотрим нейрон:

Теперь значение Y может быть любым в диапазоне от -бесконечности до +бесконечности. В действительности нейрон не знает границу, после которой следует активация. Ответим на вопрос, как мы решаем, должен ли нейрон быть активирован (мы рассматриваем паттерн активации, так как можем провести аналогию с биологией. Именно таким образом работает мозг, а мозг — хорошее свидетельство работы сложной и разумной системе).

Для этой цели решили добавлять активационную функцию. Она проверяет произведенное нейроном значение Y на предмет того, должны ли внешние связи рассматривать этот нейрон как активированный, или его можно игнорировать.

Ступенчатая функция активации

Первое, что приходит в голову, это вопрос о том, что считать границей активации для активационной функции. Если значение Y больше некоторого порогового значения, считаем нейрон активированным. В противном случае говорим, что нейрон неактивен. Такая схема должна сработать, но сначала давайте её формализуем.

  • Функция А = активирована, если Y > граница, иначе нет.
  • Другой способ: A = 1, если Y > граница, иначе А = 0.

Функция, которую мы только что создали, называется ступенчатой. Такая функция представлена на рисунке ниже.

Функция принимает значение 1 (активирована), когда Y > 0 (граница), и значение 0 (не активирована) в противном случае.

Мы создали активационную функцию для нейрона. Это простой способ, однако в нём есть недостатки. Рассмотрим следующую ситуацию.

Представим, что мы создаем бинарный классификатор — модель, которая должна говорить “да” или “нет” (активирован или нет). Ступенчатая функция сделает это за вас — она в точности выводит 1 или 0.

Теперь представим случай, когда требуется большее количество нейронов для классификации многих классов : класс1, класс2, класс3 и так далее. Что будет, если активированными окажутся больше чем 1 нейрон? Все нейроны из функции активации выведут 1. В таком случае появляются вопросы о том, какой класс должен в итоге получиться для заданного объекта.

Мы хотим, чтобы активировался только один нейрон, а функции активации других нейронов были равна нулю (только в этом случае можно быть уверенным, что сеть правильно определяет класс). Такую сеть труднее обучать и добиваться сходимости. Если активационная функция не бинарная, то возможны значения “активирован на 50%”, “активирован на 20%” и так далее. Если активированы несколько нейронов, можно найти нейрон с наибольшим значением активационной функции (лучше, конечно, чтобы это была softmax функция, а не max . Но пока не будем заниматься этими вопросами).

Но в таком случае, как и ранее, если более одного нейрона говорят “активирован на 100%”, проблема по прежнему остается. Так как существуют промежуточные значения на выходе нейрона, процесс обучения проходит более гладко и быстро, а вероятность появления нескольких полностью активированных нейронов во время тренировки снижается по сравнению со ступенчатой функцией активации (хотя это зависит от того, что вы обучаете и на каких данных).

Мы определились, что хотим получать промежуточные значения активационной функции (аналоговая функция), а не просто говорить “активирован” или нет (бинарная функция).

Первое, что приходит в голову — линейная функция.

Линейная функция активации

A = cx

Линейная функция представляет собой прямую линию и пропорциональна входу (то есть взвешенной сумме на этом нейроне).

Такой выбор активационной функции позволяет получать спектр значений, а не только бинарный ответ. Можно соединить несколько нейронов вместе и, если более одного нейрона активировано, решение принимается на основе применения операции max (или softmax). Но и здесь не без проблем.

Если вы знакомы с методом для обучения, то можете заметить, что для этой функции производная равна постоянной.

Производная от A=cx по x равна с . Это означает, что градиент никак не связан с Х . Градиент является постоянным вектором, а спуск производится по постоянному градиенту. Если производится ошибочное предсказание, то изменения, сделанные ошибки, тоже постоянны и не зависят от изменения на входе delta(x).

Это не есть хорошо (не всегда, но в большинстве случаев). Но существует и другая проблема. Рассмотрим связанные слои. Каждый слой активируется линейной функцией. Значение с этой функции идет в следующий слой в качестве входа, второй слой считает взвешенную сумму на своих входах и, в свою очередь, включает нейроны в зависимости от другой линейной активационной функции.

Не имеет значения, сколько слоев мы имеем. Если все они по своей природе линейные, то финальная функция активации в последнем слое будет просто линейной функцией от входов на первом слое! Остановитесь на мгновение и обдумайте эту мысль.

Это означает, что два слоя (или N слоев) могут быть заменены одним слоем. Мы потеряли возможность делать наборы из слоев. Не важно, как мы стэкаем, вся все равно будет подобна одному слою с линейной функцией активации (комбинация линейных функций линейным образом — другая линейная функция ).

Сигмоида

Сигмоида выглядит гладкой и подобна ступенчатой функции. Рассмотрим её преимущества.

Во-первых, сигмоида — нелинейна по своей природе, а комбинация таких функций производит тоже нелинейную функцию. Теперь мы можем стэкать слои.

Еще одно достоинство такой функции — она не бинарна, что делает активацию аналоговой, в отличие от ступенчатой функции. Для сигмоиды также характерен гладкий градиент.

Если вы заметили, в диапазоне значений X от -2 до 2 значения Y меняется очень быстро . Это означает, что любое малое изменение значения X в этой области влечет существенное изменение значения Y . Такое поведение функции указывает на то, что Y имеет тенденцию прижиматься к одному из краев кривой.

Сигмоида действительно выглядит подходящей функцией для задач классификации. Она стремиться привести значения к одной из сторон кривой (например, к верхнему при х=2 и нижнему при х=-2 ). Такое поведение позволяет находить четкие границы при предсказании.

Другое преимущество сигмоиды над линейной функцией заключается в следующем. В первом случае имеем фиксированный диапазон значений функции — , тогда как линейная функция изменяется в пределах (-inf, inf). Такое свойство сигмоиды очень полезно, так как не приводит к ошибкам в случае больших значений активации.

Сегодня сигмоида является одной из самых частых активационных функций в нейросетях. Но и у неё есть недостатки, на которые стоит обратить внимание.

Вы уже могли заметить, что при приближении к концам сигмоиды значения Y имеют тенденцию слабо реагировать на изменения в X . Это означает, что градиент в таких областях принимает маленькие значения. А это, в свою очередь, приводит к проблемам с градиентом исчезновения. Рассмотрим подробно, что происходит при приближении активационной функции к почти горизонтальной части кривой на обеих сторонах.

В таком случае значение градиента мало или исчезает (не может сделать существенного изменения из-за чрезвычайно малого значения). Нейросеть отказывается обучаться дальше или делает это крайне медленно (в зависимости от способа использования или до тех пор, пока градиент/вычисление не начнет страдать от ограничений на значение с плавающей точкой). Существуют варианты работы над этими проблемами, а сигмоида всё ещё очень популярна для задач классификации.

Еще одна часто используемая активационная функция — гиперболический тангенс.

Гиперболический тангенс очень похож на сигмоиду. И действительно, это скорректированная сигмоидная функция.

Поэтому такая функция имеет те же характеристики, что и у сигмоиды, рассмотренной ранее. Её природа нелинейна, она хорошо подходит для комбинации слоёв, а диапазон значений функции -(-1, 1). Поэтому нет смысла беспокоиться, что активационная функция перегрузится от больших значений. Однако стоит отметить, что градиент тангенциальной функции больше, чем у сигмоиды (производная круче). Решение о том, выбрать ли сигмоиду или тангенс, зависит от ваших требований к амплитуде градиента. Также как и сигмоиде, гиперболическому тангенсу свойственная проблема исчезновения градиента.

Тангенс также является очень популярной и используемой активационной функцией.

ReLu

Следующая в нашем списке — активационная функция ReLu,

A(x) = max(0,x)

Пользуясь определением, становится понятно, что ReLu возвращает значение х , если х положительно, и 0 в противном случае. Схема работы приведена ниже.

На первый взгляд кажется, что ReLu имеет все те же проблемы, что и линейная функция, так как ReLu линейна в первом квадранте. Но на самом деле, ReLu нелинейна по своей природе, а комбинация ReLu также нелинейна ! (На самом деле, такая функция является хорошим аппроксиматором , так как любая функция может быть аппроксимирована комбинацией ReLu). Это означает, что мы можем стэкать слои. Область допустимых значений ReLu — . Так, например (рис. 7.2, г ), пороговая функция может быть переопределена как

. (7.8)

Вместо сигмоидальной активационной функции широко применяется гиперболический тангенс, обладающий аналогичными свойствами (рис. 11, д )

. (7.10)

Нечетность этой функции делает ее удобной для решения задач уп­рав­ле­ния.

4. Во введенных Брумхеадом и Лоуе нейронных сетях в качестве активационной применяется функция Гаусса (рис. 7.2, е )

Ее аргумент рассчитывается по формуле:

, (7.12)
где

z - вектор входных сигналов нейрона,

c - вектор координат центра окна активационной функции ,

s - ширина окна,

|| || - евклидово расстояние.

В теории нейронных сетей активационные функции типа

(7.13)

называются радиально-базисными функциями (РБФ), а основанные на них сети - РБФ-сетями (RBF - radial basis function).

Представление входных данных

Особенность нейронной сети в том, что в них все входные и выходные па­ра­метры представлены в виде чисел с плавающей точкой обычно в диапазоне . В то же время данные предметной области часто имеют другое коди­ро­ва­ние. Так, это могут быть числа в произвольном диапазоне, даты, сим­воль­ные стро­ки. Таким образом, данные о проблеме могут быть как количественными, так и качественными. Рассмотрим сначала преобразование качественных данных в числовые, а затем способ преобразования входных дан­ных в требуемый диа­па­зон.

Качественные данные мы можем разделить на две группы: упо­ря­до­чен­ные (ординальные) и неупорядоченные. Для определения способов ко­ди­рования этих данных рассмотрим задачу о прогнозировании ус­пеш­нос­ти лечения какого-либо заболевания. Примером упорядоченных данных мо­гут, например, являться данные о дополнительных факторах риска при данном заболевании.

А также возможным примером может быть возраст больного.

Опасность каждого фактора возрастает в таблицах при движении слева направо.

В первом случае видим, что у больного может быть несколько фак­то­ров рис­­ка одновременно. В этом случае нам необходимо использовать такое ко­ди­ро­вание, при котором отсутствует ситуация, когда разным комбинациям фак­торов со­от­ветствует одно и то же значение. Наиболее распространен способ ко­ди­ро­вания, когда каждому фактору ставится в соответствие разряд двоичного числа. Число 1 в этом разряде говорит о наличии фактора, а число 0 - о его отсутствии. Параметру нет можно поставить в соответствие число 0. Таким образом, для представления всех факторов достаточно четырех разрядного двоичного числа. Таким образом, число 1010 2 = 10 10 означает наличие у больного гипертонии и употребления алкоголя, а числу 0000 2 соответствует отсутствие у больного факторов риска. Таким образом, факторы риска будут представлены числами в диапазоне .

Во втором случае мы также можем кодировать все значения двоичными ве­сами, но это будет нецелесообразно, так как набор возможных значений будет слиш­ком неравномерным. В этом случае более правильным будет установка в со­от­ветствие каждому значению сво­его веса, отличающегося на единицу от веса со­седнего значения. Так число 3 будет соответствовать возрасту 50-59 лет. Таким образом, возраст будет закодирован числами в диапазоне .

Аналогично можно поступать и для неупо­рядоченных данных, поставив в соответствие каждому значению ка­кое-либо число. Однако, это вво­дит нежелательную упорядоченность, которая может исказить данные и сильно затруднить процесс обу­чения. В качестве одного из способов решения этой про­блемы мож­но предложить поставить в соответствие каждому значению одного из входов нейронной сети. В данном случае при наличии этого значения со­от­ветству­ющий ему вход устанавливается в 1 или в 0 при противном слу­чае. Дан­ный способ не является панацеей, ибо при боль­шом количестве вариантов вход­ного значения число входов ней­рон­ной сети раз­растается до огромного количества. Это резко увеличит затраты вре­мени на обучение. В качестве ва­ри­ан­та обхода этой проблемы мож­но использовать несколько другое решение. В со­ответствие каждому зна­чению входного параметра ставится бинарный вектор, каждый раз­ряд которого соответствует отдельному входу нейронной сети. Например, если чис­ло возможных значений параметра 128, то можно ис­поль­зовать семиразрядный вектор. Тогда первому значению будет соот­ветствовать вектор 0000000, 128-му - 1111111, а, например, значению 26 - 0011011. Тогда число требуемых для кодирования параметров входов можно определить как

N = Log 2 (n ) , (7.14)
где

n - количество значений параметра,

N - количество входов.

Преобразование числовых входных данных

Для нейронной сети необходимо чтобы входные данные лежали в диа­па­зо­не , в то время как данные проблемной области могут лежать в любом ди­а­пазоне. Пред­положим, что данные по одному из параметров лежат в диапазоне . Тогда простым способом нормирования будет

, (7.15)
где

x - исходное значение параметра,

Значение, подаваемое на вход нейронной сети.

Этот способ кодирования не лишен недостатков. Так в случае если , то распределение данных на входе может принять вид

Рис. 11. Распределение входных параметров

Распределение входных параметров будет крайне неравномерным, что приведет к ухудшению качества обучения. Поэтому в подобных ситуациях, а также в случае, когда значение входа лежит в диапазоне }

© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows