Сетевые анализаторы. Разбираем по косточкам компьютерные сети: HTTP, TCP, REST

Сетевые анализаторы. Разбираем по косточкам компьютерные сети: HTTP, TCP, REST

Межсетевой протокол IP . Модуль IP является базовым элементом технологии Internet. Его центральной частью является таблица маршрутов. Таблица маршрутов заполняется администратором сети и обычно инициализируется в момент загрузки системы. Когда речь идет о простой локальной IP-сети, то протокол IP мало что добавляет к услугам Ethernet, за исключением того, что в сети будут работать все прикладные программы, реализованные для IP-технологии. Однако ситуация меняется, если речь идет о сетях, сопряженных шлюзом.

Протокол RIP (Routing Information Protocol) . Протокол предназначен для автоматического обновления таблицы маршрутов. При этом используется информация о состоянии сети, которая рассылается маршрутизаторами (routers). В соответствии с протоколом RIP любая машина может быть маршрутизатором. При этом все маршрутизаторы делятся на активные и пассивные. Активные маршрутизаторы сообщают о маршрутах, которые они поддерживают в сети. Пассивные маршрутизаторы читают эти широковещательные сообщения и исправляют свои таблицы маршрутов, но при этом сами информации в сеть не предоставляют. Обычно в качестве активных маршрутизаторов выступают шлюзы, а в качестве пассивных - обычные машины (hosts).

Протокол UDP . Этот протокол является одним из двух основных транспортных протоколов, расположенных сразу над IP. К заголовку IP-пакета UDP добавляет два поля: порт и контрольная сумма. Поле “порт” позволяет мультиплексировать информацию между разными прикладными процессами. Поле "контрольная сумма" позволяет поддерживать целостность данных

Протокол TCP . Предоставляет другой способ доставки сообщений, отличный от UDP. Вместо "ненадежной" доставки датаграмм без установления соединения, TCP обеспечивает гарантированную доставку с установлением соединения в виде байтовых потоков.

Прикладные программы взаимодействуют с модулем TCP также через порты. Существуют определенные стандартом номера портов, которые отведены под обслуживание стандартных сервисов Internet. Так telnet обслуживается через 23 порт, почта (SMTP) - через 25 и т.п.

Когда два процесса начинают общаться через модули TCP, то эти модули поддерживают информацию о состоянии соединения, которое называется виртуальным каналом. Канал является дуплексным, т.е. информация может передаваться одновременно в двух направлениях.

Согласно протоколу TCP, поток байтов разбивается на пакеты. Любые данные для модуля TCP представляются в виде потока байтов. На другом конце виртуального канала данные снова собираются в поток. Модуль TCP не сохраняет разделения потоков данных на записи. Так можно записать в канал 5 записей по 80 байт, а прочитать одну в 400 байтов длиной

Подробное описание протокола tcp

TCP (Transmission Control Protocol, Протокол управления передачей) был спроектирован в качестве связующего протокола для обеспечения интерактивной работы между компьютерами. TCP обеспечивает надежность и достоверность обмена данными между процессами на компьютерах, входящих в общую сеть. TCP, с одной стороны, взаимодействует с прикладным протоколом пользовательского приложения, а с другой, с протоколом, обеспечивающим "низкоуровневые" функции: маршрутизацию и адресацию пакетов, которые, как правило, выполняет IP.

В операционной системе реализация TCP представляет собой отдельный системный модуль (драйвер), через который, как правило, проходят все вызовы функций протокола. Интерфейс между прикладным процессом и TCP представляет собой библиотеку вызовов, такую же как библиотека системных вызовов, например, для работы с файлами. Вы можете открыть или закрыть соединение (как открыть или закрыть файл) и отправить или принять данные из установленного соединения (аналогично операциям чтения и записи файла). Вызовы TCP могут работать с прикладным приложением в асинхронном режиме. Безусловно, реализация TCP в каждой системе может осуществлять множество собственных функций, но любая из этих реализации должна обеспечивать минимум функциональности, которая требуется стандартами TCP.

Схема работы пользовательского приложения с TCP, в общих чертах, состоит в следующем. Для передачи данных пользовательскому процессу надо вызвать соответствующую функцию TCP, с указанием на буфер передаваемых данных. TCP упаковывает эти данные в сегменты своего стека и вызывает функцию передачи протокола нижнего уровня, например IP.

На другом конце, получатель TCP группирует поступившие от протокола нижнего уровня данные в принимающие сегменты своего буфера, проверяет целостность данных, передает данные пользовательскому процессу и уведомляет отправителя об их получении.

Пользовательский интерфейс с TCP может выполнять такие команды как открыть (OPEN) или закрыть (CLOSE) соединение, отправить (SEND) или принять (RECEIVE) данные, или получить статус соединения (STATUS). Эти вызовы подобны любым другим вызовам функций операционной системы из пользовательской программы, таким как открытие, чтение или закрытие файла.

В модели межсетевого соединения взаимодействие TCP и протоколов нижнего уровня, как правило, не специфицировано, за исключением того, что должен существовать механизм, который обеспечивал бы асинхронную передачу информации от одного уровня к другому. Результатом работы этого механизма является инкапсуляция протокола более высокого уровня в тело протокола более низкого уровня. Реализуется этот механизм через интерфейс вызовов между TCP и IP.

В результате работы этого механизма каждый TCP-пакет вкладывается в "конверт" протокола нижнего уровня, например, IP. Получившаяся таким образом дейтаграмма содержит в себе TCP-пакет так же как TCP-пакет содержит пользовательские данные.

Простейшая модель работы TCP-протокола выглядит обманчиво гладко, поскольку на самом деле реальная работа изобилует множеством деталей и тонкостей.

Логическая структура сетевого программного обеспечения, реализующего протоколы семейства TCP/IP в каждом узле сети Internet, изображена на рис. 2.12.

Прямоугольники обозначают обработку данных, а линии, соединяющие прямоугольники, - пути передачи данных. Горизонтальная линия внизу рисунка обозначает кабель сети Ethernet, которая используется в качестве примера физической среды. Понимание этой логической структуры является основой для понимания всей технологии TCP/IP.

Рис. 2.12.Структура сетевого программного обеспечения семейства протоколов TCP/IP

 Потоки данных, стек протоколов, механизм гнезд и мультиплексирование соединений

 Процедура установления соединения и передача данных

 Механизмы обеспечения достоверности передаваемых данных

 Механизм контроля потока данных

 Флаг важности пакета, средства обеспечения безопасности протокола

Transmission Control Protocol (TCP) (протокол управления передачей) - один из основных сетевых протоколовИнтернета, предназначенный для управленияпередачей данныхв сетях и подсетяхTCP/IP.

Выполняет функции протокола транспортного уровнямодели OSI.

TCP - это транспортный механизм, предоставляющий поток данных, с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета. В отличие отUDPгарантирует целостность передаваемых данных и уведомление отправителя о результатах передачи.

Когда осуществляется передача от компьютера к компьютеру через Интернет, TCP работает на верхнем уровне между двумя конечными системами, например, браузероми веб-сервером. Также TCP осуществляет надежную передачу потока байтов от одной программы на некотором компьютере к другой программе на другом компьютере. Программы для электронной почты и обмена файлами используют TCP. TCP контролирует длину сообщения, скорость обмена сообщениями, сетевой трафик.

Протокол TCP работает непосредственно над протоколом IP (транспортный уровень) и использует для транспортировки своих блоков данных потенциально ненадежный протокол IP. Надежность передачи данных протоколом TCP достигается за счет того, что он основан на установлении логических соединений между взаимодействующими процессами. До тех пор пока программы протокола TCP продолжают функционировать корректно, а составная сеть не распалась на несвязные части, ошибки в передаче данных на уровне протокола IP не будут влиять на правильное получение данных.

Протокол IP используется протоколом TCP в качестве транспортного средства. Перед отправкой своих блоков данных протокол TCP помещает их в оболочку IP-пакета. При необходимости протокол IP осуществляет любую фрагментацию и сборку блоков данных TCP, требующуюся для осуществления передачи и доставки через множество сетей и промежуточных шлюзов.

Характеристики протокола TCP:

    Перед передачей данных протокол устанавливает соединение

    Полнодуплексная передача – есть 2 логических канала – входной и выходной

    Надежность – данные будут передаваться по очереди, от получателя ожидается подтверждение приема. Если такое уведомление не пришло, TCP-сегмент посылается повторно. На стороне получателя дублирующие сегменты отбрасываются.

    TCPрассматривает данные как байтовый поток

    Управление потоком со стороны отправителя и получателя

Структура TCP-сегмента:IP | TCP | данные IP= 20 байт;TCP+ данные = 65515 байт; => данные = 65515 – 20 = 65495 байт

Структура TCP-заголовка:

    Порт отправителя

    Порт получателя

    Номер последовательности

    Номер подтверждения

    Смещение данных

    Зарезервировано

    Контрольная сумма

    Указатель важности

Флаги (управляющие биты):

Это поле содержит 6 битовых флагов:

    URG - Поле " Указатель важности " задействовано (Urgent pointer field is significant )

    ACK - Поле "Номер подтверждения" задействовано (Acknowledgement field is significant )

    PSH - (Push function ) инструктирует получателя протолкнуть данные, накопившиеся в приемном буфере, в приложение пользователя

    RST - Оборвать соединения, сбросить буфер (очистка буфера) (Reset the connection )

    SYN - Синхронизация номеров последовательности (Synchronize sequence numbers )

FIN (final , бит) - флаг, будучи установлен, указывает на завершение соединения (FIN bit used for connection termination ).

Заголовок UDP всегда имеет длину 64 бита. Поля, определённые в сегменте UDP (см. рисунок) включают следующие:
1. Порт отправителя (Source port): номер порта источника(16 бит)
2. Порт получателя (Destination port): номер порта назначения (16 бит)
3. Длина сообщения (Length): длина заголовка UDP и данных UDP (16 бит)
4. Контрольная сумма (Checksum): вычисленная контрольная сумма полей заголовка и данных (16 бит)
5. Данные (Data): данные протокола вышележащего уровня (upper-layer protocol — ULP) (переменная длина)
Примеры протоколов, которые используют UDP: TFTP, SNMP, Network File System (NFS) и Domain Name System (DNS).

Заголовок TCP содержит информацию, которая определена TCP протоколом. В данном разделе описаны компоненты заголовка TCP.

Сегменты TCP передаются с помощью использования пакетов IP. Заголовок TCP следует за заголовком IP,. Это разделение допускает существование других протоколов на уровне хоста, отличных от TCP. Поля TCP заголовка включают следующие:

Порт отправителя (Source port): номер порта источника (16 бит)

Порт получателя (Destination port): номер порта назначения (16 бит)

Порядковый номер (Sequence number): порядковый номер первого октета данных
сегмента, используемый для гарантии правильного упорядочения приходящих данных
(32 бита)

Номер подтверждения (Acknowledgment number): следующий ожидаемый октет
TCP (32 бита)

Длина заголовка (Header length): количество 32-битных слов в заголовке (4 бита)

Зарезервировано (Reserved): установлено в 0 (3 бита)

Управляющие биты (Control bits): функции управления — такие как установка,
перегрузка и разрыв сеанса (9 бит). Одиночный бит, который имеет специальное
значение, часто рассматриваемое как флаг.

Окно (Window): число октетов, которое устройство согласно принять (16 бит)

Контрольная сумма (Checksum): вычисленная контрольная сумма полей заголовка и
данных (16 бит)

Указатель срочности данных (Urgent): показывает конец срочных данных (16 бит)

Опции (Options): в настоящее время определена одна опция — максимальный размер
сегмента TCP (0 или 32 бита)

Данные (Data): данные протокола вышележащего уровня (upper-layer protocol — ULP)
(переменная длина)

Большинство из нас знает TCP/IP как "клей", связующий Internet. Но не многие способны дать убедительное описание того, что этот протокол представляет собой и как работает. Итак, что же такое TCP/IP в действительности?

TCP/IP - это средство для обмена информацией между компьютерами, объединенными в сеть. Не имеет значения, составляют ли они часть одной и той же сети или подключены к отдельным сетям. Не играет роли и то, что один из них может быть компьютером Cray, а другой Macintosh. TCP/IP - это не зависящий от платформы стандарт, который перекидывает мосты через пропасть, лежащую между разнородными компьютерами, операционными системами и сетями. Это протокол, который глобально управляет Internet, и в значительной мере благодаря сети TCP/IP завоевал свою популярность.

Понимание TCP/IP главным образом подразумевает способность разбираться в наборах таинственных протоколов, которые используются главными компьютерами TCP/IP для обмена информацией. Давайте рассмотрим некоторые из этих протоколов и выясним, что составляет оболочку TCP/IP.
Основы TCP/IP
TCP/IP - это аббревиатура термина Transmission Control Protocol/Internet Protocol (Протокол управления передачей/Протокол Internet). В терминологии вычислительных сетей протокол - это заранее согласованный стандарт, который позволяет двум компьютерам обмениваться данными. Фактически TCP/IP не один протокол, а несколько. Именно поэтому вы часто слышите, как его называют набором, или комплектом протоколов, среди которых TCP и IP - два основных.

Программное обеспечение для TCP/IP, на вашем компьютере, представляет собой специфичную для данной платформы реализацию TCP, IP и других членов семейства TCP/IP. Обычно в нем также имеются такие высокоуровневые прикладные программы, как FTP (File Transfer Protocol, Протокол передачи файлов), которые дают возможность через командную строку управлять обменом файлами по Сети.

TCP/IP - зародился в результате исследований, профинансированных Управлением перспективных научно-исследовательских разработок (Advanced Research Project Agency, ARPA) правительства США в 1970-х годах. Этот протокол был разработан с тем, чтобы вычислительные сети исследовательских центров во всем мире могли быть объединены в форме виртуальной "сети сетей" (internetwork). Первоначальная Internet была создана в результате преобразования существующего конгломерата вычислительных сетей, носивших название ARPAnet, с помощью TCP/IP.

Причина, по которой TCP/IP столь важен сегодня, заключается в том, что он позволяет самостоятельным сетям подключаться к Internet или объединяться для создания частных интрасетей. Вычислительные сети, составляющие интрасеть, физически подключаются через устройства, называемые маршрутизаторами или IP-маршрутизаторами. Маршрутизатор - это компьютер, который передает пакеты данных из одной сети в другую. В интрасети, работающей на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). Благодаря программному обеспечению TCP/IP все компьютеры, подключенные к вычислительной сети, становятся "близкими родственниками". По существу оно скрывает маршрутизаторы и базовую архитектуру сетей и делает так, что все это выглядит как одна большая сеть. Точно так же, как подключения к сети Ethernet распознаются по 48-разрядным идентификаторам Ethernet, подключения к интрасети идентифицируются 32-разрядными IP-адресами, которые мы выражаем в форме десятичных чисел, разделенных точками (например, 128.10.2.3). Взяв IP-адрес удаленного компьютера, компьютер в интрасети или в Internet может отправить данные на него, как будто они составляют часть одной и той же физической сети.

TCP/IP дает решение проблемы данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый член семейства протоколов TCP/IP вносит свою лепту в общее дело. IP - самый фундаментальный протокол из комплекта TCP/IP - передает IP-дейтаграммы по интрасети и выполняет важную функцию, называемую маршрутизацией, по сути дела это выбор маршрута, по которому дейтаграмма будет следовать из пункта А в пункт B, и использование маршрутизаторов для "прыжков" между сетями.

TCP - это протокол более высокого уровня, который позволяет прикладным программам, запущенным на различных главных компьютерах сети, обмениваться потоками данных. TCP делит потоки данных на цепочки, которые называются TCP-сегментами, и передает их с помощью IP. В большинстве случаев каждый TCP-сегмент пересылается в одной IP-дейтаграмме. Однако при необходимости TCP будет расщеплять сегменты на несколько IP-дейтаграмм, вмещающихся в физические кадры данных, которые используют для передачи информации между компьютерами в сети. Поскольку IP не гарантирует, что дейтаграммы будут получены в той же самой последовательности, в которой они были посланы, TCP осуществляет повторную "сборку" TCP-сегментов на другом конце маршрута, чтобы образовать непрерывный поток данных. FTP и telnet - это два примера популярных прикладных программ TCP/IP, которые опираются на использование TCP.

Другой важный член комплекта TCP/IP - User Datagram Protocol (UDP, протокол пользовательских дейтаграмм), который похож на TCP, но более примитивен. TCP - "надежный" протокол, потому что он обеспечивает проверку на наличие ошибок и обмен подтверждающими сообщениями чтобы данные достигали своего места назначения заведомо без искажений. UDP - "ненадежный" протокол, ибо не гарантирует, что дейтаграммы будут приходить в том порядке, в котором были посланы, и даже того, что они придут вообще. Если надежность - желательное условие, для его реализации потребуется программное обеспечение. Но UDP по-прежнему занимает свое место в мире TCP/IP, и испльзуется во многих программах. Прикладная программа SNMP (Simple Network Management Protocol, простой протокол управления сетями), реализуемый во многих воплощениях TCP/IP, - это один из примеров программ UDP.

Другие TCP/IP протоколы играют менее заметные, но в равной степени важные роли в работе сетей TCP/IP. Например, протокол определения адресов (Address Resolution Protocol, ARP) ппреобразует IP-адреса в физические сетевые адреса, такие, как идентификаторы Ethernet. Родственный протокол - протокол обратного преобразования адресов (Reverse Address Resolution Protocol, RARP) - выполняет обеспечивает обратное действие, преобразуя физические сетевые адреса в IP-адреса. Протокол управления сообщениями Internet (Internet Control Message Protocol, ICMP) представляет собой протокол сопровождения, который использует IP для обмена управляющей информацией и контроля над ошибками, относящимися к передаче пакетов IP. Например, если маршрутизатор не может передать IP-дейтаграмму, он использует ICMP, с тем чтобы информировать отправителя, что возникла проблема. Краткое описание некоторых других протоколов, которые "прячутся под зонтиком" TCP/IP, приведено во врезке.
Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур
ARP (Address Resolution Protocol, протокол определения адресов): конвертирует 32-разрядные IP-адреса в физические адреса вычислительной сети, например, в 48-разрядные адреса Ethernet.

FTP (File Transfer Protocol, протокол передачи файлов): позволяет передавать файлы с одного компьютера на другой с использованием TCP-соединений. В родственном ему, но менее распространенном протоколе передачи файлов - Trivial File Transfer Protocol (TFTP) - для пересылки файлов применяется UDP, а не TCP.

ICMP (Internet Control Message Protocol, протокол управляющих сообщений Internet): позволяет IP-маршрутизаторам посылать сообщения об ошибках и управляющую информацию другим IP-маршрутизаторам и главным компьютерам сети. ICMP-сообщения "путешествуют" в виде полей данных IP-дейтаграмм и обязательно должны реализовываться во всех вариантах IP.

IGMP (Internet Group Management Protocol, протокол управления группами Internet): позволяет IP-дейтаграммам распространяться в циркулярном режиме (multicast) среди компьютеров, которые принадлежат к соответствующим группам.

IP (Internet Protocol, протокол Internet): низкоуровневый протокол, который направляет пакеты данных по отдельным сетям, связанным вместе с помощью маршрутизаторов для формирования Internet или интрасети. Данные "путешествуют" в форме пакетов, называемых IP-дейтаграммами.

RARP (Reverse Address Resolution Protocol, протокол обратного преобразования адресов): преобразует физические сетевые адреса в IP-адреса.

SMTP (Simple Mail Transfer Protocol, простой протокол обмена электронной почтой): определяет формат сообщений, которые SMTP-клиент, работающий на одном компьютере, может использовать для пересылки электронной почты на SMTP-сервер, запущенный на другом компьютере.

TCP (Transmission Control Protocol, протокол управления передачей): протокол ориентирован на работу с подключениями и передает данные в виде потоков байтов. Данные пересылаются пакетами - TCP-сегментами, - которые состоят из заголовков TCP и данных. TCP - "надежный" протокол, потому что в нем используются контрольные суммы для проверки целостности данных и отправка подтверждений, чтобы гарантировать, что переданные данные приняты без искажений.

UDP (User Datagram Protocol, протокол пользовательских дейтаграмм): протокол, не зависящий от подключений, который передает данные пакетами, называемыми UDP-дейтаграммами. UDP - "ненадежный" протокол, поскольку отправитель не получает информацию, показывающую, была ли в действительности принята дейтаграмма.
Архитектура TCP/IP

Проектировщики вычислительных сетей часто используют семиуровневую модель ISO/OSI (International Standards Organization/Open Systems Interconnect, Международная организация по стандартизации/ Взаимодействие открытых систем), которая описывает архитектуру сетей. Каждый уровень в этой модели соответствует одному уровню функциональных возможностей сети. В самом основании располагается физический уровень, представляющий физическую среду, по которой "путешествуют" данные, - другими словами, кабельную систему вычислительной сети. Над ним имеется канальный уровень, или уровень звена данных, функционирование которого обеспечивается сетевыми интерфейсными платами. На самом верху размещается уровень прикладных программ, где работают программы, использующие служебные функции сетей.

На рисунке показано, как TCP/IP согласуется с моделью ISO/OSI. Этот рисунок также иллюстрирует уровневое строение TCP/IP и показывает взаимосвязи между основными протоколами. При переносе блока данных из сетевой прикладной программы в плату сетевого адаптера он последовательно проходит через ряд модулей TCP/IP. При этом на каждом шаге он доукомплектовывается информацией, необходимой для эквивалентного модуля TCP/IP на другом конце цепочки. К тому моменту, когда данные попадают в сетевую плату, они представляют собой стандартный кадр Ethernet, если предположить, что сеть основана именно на этом интерфейсе. Программное обеспечение TCP/IP на приемном конце воссоздает исходные данные для принимающей программы путем захвата кадра Ethernet и прохождения его в обратном порядке по набору модулей TCP/IP. (Один из наилучших способов разобраться во внутреннем устройстве TCP/IP стоит в использовании программы-"шпиона", чтобы найти внутри кадров, "пролетающих" по сети, информацию, добавленную различными модулями TCP/IP.)

В левой части этой диаграммы показаны уровни модели ISO/OSI. Правая часть диаграммы иллюстрирует корреляцию TCP/IP с этой моделью.

Для иллюстрации роли, которую TCP/IP играет в вычислительных сетях в реальном мире, рассмотрим, что происходит, когда Web-браузер использует HTTP (HyperText Transfer Protocol, протокол передачи гипертекста) для извлечения страницы HTML-данных из Web-сервера, подключенного к Internet. Для формирования виртуального подключения к серверу браузер использует абстракцию программного обеспечения высокого уровня, называемую гнездом (socket). А чтобы извлечь страницу Web, он посылает на сервер команду GET HTTP, записывая ее в гнездо. Программное обеспечение гнезда, в свою очередь, применяет TCP для пересылки битов и байтов, составляющих команду GET на Web-сервер. TCP сегментирует данные и передает отдельные сегменты модулю IP, который пересылает сегменты в дейтаграммах на Web-сервер.

Если браузер и сервер работают на компьютерах, подключенных к различным физическим сетям (как это обычно бывает), дейтаграммы передаются от сети к сети до тех пор, пока не достигнут той, к которой физически подключен сервер. В конце концов дейтаграммы достигают пункта своего назначения и вновь собираются таким образом, чтобы Web-сервер, который считывает цепочки данных из своего гнезда, получал непрерывный поток данных. Для браузера и сервера данные, записанные в гнездо на одном конце, как по волшебству, "всплывают" на другом конце. Но между этими событиями происходят все виды сложных взаимодействий для создания иллюзии непрерывной передачи данных между вычислительными сетями.

И это практически все, чем занимается TCP/IP: превращением множества небольших сетей в одну большую и предоставлением услуг, которые нужны прикладным программам для обмена информацией друг с другом по получающейся в итоге Internet.
Краткое заключение

О TCP/IP можно было бы рассказать много больше, но есть три ключевых момента:
TCP/IP - это набор протоколов, которые позволяют физическим сетям объединяться вместе для образования Internet. TCP/IP соединяет индивидуальные сети для образования виртуальной вычислительной сети, в которой отдельные главные компьютеры идентифицируются не физическими адресами сетей, а IP-адресами.
В TCP/IP используется многоуровневая архитектура, которая четко описывает, за что отвечает каждый протокол. TCP и UDP обеспечивают высокоуровневые служебные функции передачи данных для сетевых программ, и оба опираются на IP при передаче пакетов данных. IP отвечает за маршрутизацию пакетов до их пункта назначения.
Данные, перемещающиеся между двумя прикладными программами, работающими на главных компьютерах Internet, "путешествуют" вверх и вниз по стекам TCP/IP на этих компьютерах. Информация, добавленная модулями TCP/IP на стороне отправителя, "разрезается" соответствующими TCP/IP-модулями на принимающем конце и используется для воссоздания исходных данных.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows