Классификация видов модуляции, основные характеристики радиосигналов. Виды радиосигналов и их основные характеристики Общие сведения и параметры радиосигналов

Классификация видов модуляции, основные характеристики радиосигналов. Виды радиосигналов и их основные характеристики Общие сведения и параметры радиосигналов

Радиосигналами называют электромагнитные волны или электрические высокочастотные колебания, которые заключают в себе передаваемое сообщение. Для образования сигнала параметры высокочастотных колебаний изменяются (модулируются) с помощью управляющих сигналов, которые представляют собой напряжение, изменяющееся по заданному закону. В качестве модулируемых обычно используются гармонические высокочастотные колебания:

где w 0 =2πf 0 – высокая несущая частота;

U 0 – амплитуда высокочастотных колебаний.

К наиболее простым и часто используемым управляющим сигналам относятся гармоническое колебание

где Ω – низкая частота, много меньшая w 0 ; ψ – начальная фаза; U m – амплитуда, а также прямоугольные импульсные сигналы, которые характеризуются тем, что значение напряжения U упр (t )=U в течение интервалов времени τ и, называемых длительностью импульсов, и равно нулю в течение интервала между импульсами (рис.1.13). Величина T и называется периодом повторения импульсов; F и =1/T и – частота их повторения. Отношение периода повторения импульсов T и к длительности τ и называется скважностью Q импульсного процесса: Q =T и /τ и.

Рис.1.13. Последовательность прямоугольных импульсов

В зависимости от того, какой параметр высокочастотного колебания изменяется (модулируется) с помощью управляющего сигнала, различают амплитудную, частотную и фазовую модуляцию.

При амплитудной модуляции (АМ) высокочастотных колебаний низкочастотным синусоидальным напряжением частотой Ω мод образуется сигнал, амплитуда которого изменяется во времени (рис.1.14):

Параметр m =U m /U 0 называют коэффициентом амплитудной модуляции. Его значения заключены в интервале от единицы до нуля: 1≥m≥0. Коэффициент модуляции, выраженный в процентах (т.е. m ×100%), называется глубиной амплитудной модуляции.

Рис. 1.14. Амплитудно-модулированный радиосигнал

При фазовой модуляции (ФМ) высокочастотного колебания синусоидальным напряжением амплитуда сигнала остается постоянной, а его фаза получает дополнительное приращение Δy под воздействием модулирующего напряжения: Δy=k ФМ U м sinW мод t , где k ФМ – коэффициент пропорциональности. Высокочастотный сигнал с фазовой модуляцией по синусоидальному закону имеет вид

При частотной модуляции (ЧМ) управляющий сигнал изменяет частоту высокочастотных колебаний. Если модулирующее напряжение изменяется по синусоидальному закону, то мгновенное значение частоты модулированных колебаний w=w 0 + k ЧМ U м sinW мод t , где k ЧМ – коэффициент пропорциональности. Наибольшее изменение частоты w по отношению к ее среднему значению w 0 , равное Δw М = k ЧМ U м, называется девиацией частоты. Частотно-модулированный сигнал может быть записан следующим образом:


Величина, равная отношению девиации частоты к частоте модуляции (Δw м /W мод = m ЧМ), называется коэффициентом частотной модуляции.

На рис.1.14 изображены высокочастотные сигналы при АМ, ФМ и ЧМ. Во всех трех случаях используется одинаковое модулирующее напряжение U мод, изменяющееся по симметричному пилообразному закону U мод (t )= k мод t , где k мод >0 на отрезке времени 0t 1 и k мод <0 на отрезке t 1 t 2 (рис.1.15,а).

При АМ частота сигнала остается постоянной (w 0), а амплитуда изменяется по закону модулирующего напряжения U АМ (t ) = U 0 k мод t (рис.1.15,б).

Частотномодулированный сигнал (рис.1.15,в) характеризуется постоянством амплитуды и плавным изменением частоты: w(t ) = w 0 +k ЧМ t . На отрезке времени от t =0 до t 1 частота колебаний увеличивается от значения w 0 до значения w 0 +k ЧМ t 1 , а на отрезке от t 1 до t 2 частота уменьшается опять до значения w 0 .

Фазомодулированный сигнал (рис.1.15,г) имеет постоянную амплитуду и скачкообразное изменение частоты. Поясним это аналитически. При ФМ под воздействием модулирующего напряжения

Рис.1.15. Сравнительный вид модулированных колебаний при АМ, ЧМ и ФМ:
а – модулирующее напряжение; б – амплитудно-модулированный сигнал;
в – частотно-модулированный сигнал; г – фазомодулированный сигнал

фаза сигнала получает дополнительное приращение Δy=k ФМ t , следовательно высокочастотный сигнал с фазовой модуляцией по пилообразному закону имеет вид

Таким образом, на отрезке 0t 1 частота равна w 1 >w 0 , а на отрезке t 1 t 2 она равна w 2

При передаче последовательности импульсов, например, двоичного цифрового кода (рис.1.16,а), также может использоваться АМ, ЧМ и ФМ. Такой вид модуляции называется манипуляцией или телеграфией (АТ, ЧТ и ФТ).

Рис.1.16. Сравнительный вид манипулированных колебании при АТ, ЧТ и ФТ

При амплитудной телеграфии образуется последовательность высокочастотных радиоимпульсов, амплитуда которых постоянна в течение длительности модулирующих импульсов τ и, и равна нулю все остальное время (рис.1.16,б).

При частотной телеграфии образуется высокочастотный сигнал с постоянной амплитудой, и частотой, принимающей два возможных значения (рис.1.16,в).

При фазовой телеграфии образуется высокочастотный сигнал с постоянной амплитудой и частотой, фаза которого изменяется на 180° по закону модулирующего сигнала (рис.1.16,г).

Лекция №5

Т ема №2: Передача ДИСКРЕТНЫХ сообщений

Тема лекции: ЦИФРОВЫЕ РАДИОСИГНАЛЫ И ИХ

Характеристики Введение

Для систем передачи данных требование достоверности передаваемой информации наиболее важно. При этом необходим логический контроль процессов передачи и приема информации. Это становится возможным при использовании цифровых сигналов для передачи информации в формализованном виде. Такие сигналы позволяют унифицировать элементную базу и использовать корректирующие коды, обеспечивающие существенное повышение помехоустойчивости.

2.1. Общие сведения о передаче дискретных сообщений

В настоящее время для передачи дискретных сообщений (данных) используются, как правило, так называемые цифровые каналы связи.

Носителями сообщений в цифровых каналах связи выступают цифровые сигналы или радиосигналы, если используются линии радиосвязи. Информационными параметрами в таких сигналах являются амплитуда, частота и фаза. Среди сопутствующих параметров особое место занимает фаза гармонического колебания. Если фаза гармонического колебания на приемной стороне точно известна и это используется при приеме, то такой канал связи считается когерентным . В некогерентном канале связи фаза гармонического колебания на приемной стороне не известна и считается, что она распределена по равномерному закону в интервале от 0 до 2.

Процесс преобразования дискретных сообщений в цифровые сигналы при передаче и цифровых сигналов в дискретные сообщения при приеме поясняется на рис.2.1.

Рис.2.1. Процесс преобразования дискретных сообщений при их передаче

Здесь учитывается, что основные операции преобразования дискретного сообщения в цифровой радиосигнал и обратно соответствуют обобщенной структурной схеме системы передачи дискретных сообщений рассмотренной на прошлой лекции (приведенной на рис.3). Рассмотрим основные виды цифровых радиосигналов.

2.2. Характеристики цифровых радиосигналов

2.2.1. Радиосигналы с амплитудной манипуляцией (аМн)

Амплитудная манипуляция (АМн). Аналитическое выражение АМн сигнала для любого момента времени t имеет вид:

s АМн (t, ) = A 0 (t ) cos ( t  ) , (2.1)

где A 0 , и - амплитуда, циклическая несущая частота и начальная фаза АМн радиосигнала, (t ) – первичный цифровой сигнал (дискретный информационный параметр).

Часто используется другая форма записи:

s 1 (t ) = 0 при = 0,

s 2 (t ) = A 0 cos ( t  ) при = 1, 0 t T , (2.2)

которая применяется при анализе АМн сигналов на отрезке времени, равном одному тактовому интервалу Т . Так как s (t ) = 0 при = 0, то АМн сигнал часто называют сигналом с пассивной паузой. Реализация АМн радиосигнала приведена на рис.2.2.

Рис.2.2. Реализация АМн радиосигнала

Спектральная плотность АМн сигнала имеет как непрерывную, так и дискретную составляющую на частоте несущего колебания . Непрерывная составляющая представляет собой спектральную плотность передаваемого цифрового сигнала (t ), перенесенную в область несущей частоты. Следует отметить, что дискретная составляющая спектральной плотности имеет место только при постоянной начальной фазе сигнала . На практике, как правило, это условие не выполняется, так как в результате различных дестабилизирующих факторов начальная фаза сигнала случайным образом изменяется во времени, т.е. является случайным процессом (t ) и равномерно распределена в интервале [- ; ]. Наличие таких фазовых флюктуаций приводит к “размыванию” дискретной составляющей. Эта особенность характерна и для других видов манипуляции. На рис.2.3 приведена спектральная плотность АМн радиосигнала.

Рис.2.3. Спектральная плотность АМн радиосигнала со случайной, равномерно

распределенной в интервале [- ; ] начальной фазой

Средняя мощность АМн радиосигнала равна
. Эта мощность поровну распределяется между непрерывной и дискретной составляющими спектральной плотности. Следовательно, в АМн радиосигнале на долю непрерывной составляющей, обусловленной передачей полезной информации, приходится лишь половина мощности излучаемой передатчиком.

Для формирования АМн радиосигнала обычно используется устройство обеспечивающее изменение уровня амплитуды радиосигнала по закону передаваемого первичного цифрового сигнала (t ) (например, амплитудного модулятора).

Импульсные сигналы зависят от тока. Их применение в электроэнергетике, в основном, определяется системами телеметрического контроля, управле-ния, ремонтной защиты. Импульсные сигналы для передачи энергии не при-меняют. Это связано с их широким энергетическим (частотным) спектром. Они могут быть как периодическими, то есть повторяться через опреде-ленный интервал времени, либо не периодическими. Основное назначение таких сигналов – информационное.

Основные характеристики импульсных сигналов.




1) Мгновенное значение импульсного сигнала(U(t)) аналогично синусо-идальному можно определить c помощью приборов, представляющих форму сигнала.

2) Амплитудное значение U n характеризует наибольшее значение мгно-венного напряжения в интервале периода Т. Период исследования импу-льного сигнала определяется по точкам на уровне 0,5 амплитуды.

3) Время нарастания переднего фронта t ф + -- интервал времени между точками, соответствующими 0,1U m и 0,9U m . Передний фронт харак-теризует степень нарастания сигнала, т.е. как быстро импульс от уровня 0 достигает U m . В идеале t ф + должно равняться нулю, но на практике ни-когда этот интервал не равен нулю, t ф » 10 нС.

4) Время спада (заднего фронта) t ф - определяется аналогично от уровня 0,1 до 0,9 у амплитуды, но на спаде импульса. Время заднего фронта, как и переднего, также конечно. Его стремятся уменьшить, поскольку спад влияет на длительность импульса t u .

5) Длительность импульса t u – интервал времени, определяемый на уровне 0,5 амплитуды от переднего до заднего фронта. Важное значение для сигнала имеет отношение периода следования импульса к длительности импульса, называемого скважностью. Чем выше скважность, тем большее число раз импульс ²укладывается² в период следования T/m = q.

Частным случаем импульсного сигнала является ²меандр², у кото-рого скважность q = 2. Скважность косвенно указывает на энергетическую характеристику сигнала: чем она больше, тем меньшую энергию за период переносит сигнал. Поскольку сигнал характеризуется различными уровнями напряжения для него также применяют: действующее значение напряжения, аналоговая форма; средневыпрямленное значение напряжения.

Для прямоугольных сигналов эти величины оказываются равными. Часто рассматривают энергетическую характеристику - мощность сигнала. Мощность за период P определяется для прямоугольного сигнала как:



Где P u – мощность импульса, q – скважность

Мощность импульса может достигать больших величин, при этом средняя мощность оставаться невысокой. Короткими импульсами с большой амплитудой проверяются устройства.

6) Êîýôôèöèåíò ñïàäà âåðøèíû Y =

Спектр импульсных сигналов



w 0 2w 0 3w 0 4w 0 5w 0 6w 0 t

Согласно разложения в ряд Фурье периодических сигналов, импульсный сигнал также представляют состоящим из суммы множества составляющих. В первую очередь, это основная гармоника – частота исследования сигнала и ее кратные составляющие. Но вместе с ними в это разложение входит множество других гармоник, не кратных основной. Это гармоники меньшие основной и комбинации этих гармоник с основными. Такое представление показывает, что импульсного сигнала имеет широкую полосу. Все по одной линии.


Низкие частоты обеспечивают в форме импульса крышу. Чем меньше эти составляющие, тем меньше спад вершины импульса. Вместе с этим, скваж-ность нарастания и спада импульса зависит от высокочастотных составляющих в разложении сигнала. Чем больше частота, тем круче фронты импульса. Для передачи сигнала необходимо устройство, имеющее одинаковые коэффициенты передачи во всем диапазоне спектра импульса. Но такое устройство технически выполнить сложно. Поэтому всегда решают задачу: спектр выбрать поуже, а параметр импульса получше.

Основной критерий оптимизации: скважность передачи импульсных сигналов. Но сегодня в реальных системах она достигает 100Мбод = 10 8 единиц информации в сек.

Импульсные сигналы стремятся передать положительные полярности, так как полярность определяется питающим напряжением, хотя применяют импульсы отрицательной полярности для передачи информации. При измерении величины напряжения импульсных сигналов обращают внимание на прибор: пиковый вольтметр (амплитудный), средних значений, среднеквадратичных значений. Средние и среднеквадратичные значения напряжения зависят от длительности импульса. Пиковое значение – нет. Передача импульсных сигналов по проводным линиям приводит к заметному искажению сигналов: спектр сигнала сужается в ВЧ части, поэтому фронт и спад импульса увеличиваются.






По природе любые электрические сигналы делят на 2 группы: детер-минированные, случайные.

Первые в любой момент времени могут быть описаны конкретным зна-чением (мгновенным значением U(t)). Детерминированные сигналы соста-вляют большинство.

Случайные сигналы. Природа их появления непредсказуема заранее, поэтому их нельзя вычислить, обозначить в конкретной точке. Такие сигналы можно лишь исследовать, провести эксперимент, по которого опре-делить вероятностные характеристики сигналов. В энергетике к таким сигналам относят: помехи электромагнитных полей, искажающие основной сигнал. Дополнительные сигналы появляются при разрядах полных или частичных между линиями передач. Случайные сигналы анализируют, измеряют с помощью вероятностных характеристик. С точки зрения погрешностей измерения, случайные сигналы и их влияние относят к дополнительным случайным погрешностям. При этом если их величина на порядок меньше основных случайных, их из анализа можно исключить.

По принципу обмена информацией различают три вида радиосвязи:

    симплексная радиосвязь;

    дуплексная радиосвязь;

    полудуплексная радиосвязь.

По типу аппаратуры, используемой в радиоканале связи, различают следующие виды радиосвязи:

    телефонная;

    телеграфная;

    передачи данных;

    факсимильная;

    телевизионная;

    радиовещания.

По типу используемых радиоканалов связи различают следующие виды радиосвязи:

    поверхностной волной;

    тропосферная;

    ионосферная;

    метеорная;

    космическая;

    радиорелейная.

Виды документированной радиосвязи:

    телеграфная связь;

    передача данных;

    факсимильная связь.

Телеграфная связь – для передачи сообщений в виде буквенно-цифрового текста.

Передача данных для обмена формализованной информацией между человеком и ЭВМ или между ЭВМ.

Факсимильная связь для передачи электрическими сигналами неподвижных изображений.

1 – Телекс – для обмена письменной корреспонденцией между организациями и учреждениями с использованием пишущих машинок с электронной памятью;

2 – Теле (видео) текст – для получения информации из ЭВМ на мониторы;

3 – Теле (бюро) факс – для получения используются факсимильные аппараты (либо у пользователей, либо на предприятиях).

В радиосетях широко используются следующие виды сигналов радиосвязи:

А1 - AT с манипуляцией незатухающими колебаниями;

А2 - манипуляция тонально-модулируемыми колебаниями

АЗН - А1 (В1) - ОМ с 50 % несущей

АЗА - А1 (В1) - ОМ с 10 % несущей

АЗУ1 - А1 (Bl) - ОМ без несущей

3. Особенности распространения радиоволн различных диапазонов.

Распространение радиоволн мириаметрового, километрового и гектометрового диапазонов.

Для оценки характера распространения радиоволн того или иного диапазона необходимо знать электрические свойства материальных сред, в которых распространяется радиоволна, т.е. знать и ε А земли и атмосферы.

Закон полного тока в дифференциальной форме гласит, что

т.е. изменение во времени потока магнитной индукции обуславливает появление тока проводимости и тока смещения.

Запишем это уравнение с учетом свойств материальной среды:

λ < 4 м - диэлектрик

4 м < λ < 400 м – полупроводник

λ > 400 м – проводник

Морская вода:

λ < 3 м - диэлектрик

3 cм < λ < 3 м – полупроводник

λ > 3 м – проводник

Для волны мириаметрового (CВД):

λ = 10 ÷ 100 км f = 3 ÷ 30 кГц

и километрового (ДВ):

λ = 10 ÷ 1 км f = 30 ÷ 300 кГц

диапазонов поверхность земли по своим электрическим параметрам приближается к идеальному проводнику, а ионосфера имеет наибольшую проводимость и наименьшую диэлектрическую проницаемость, т.е. близка к проводнику.

RV диапазонов CДВ и ДВ практически не проникают в землю и ионос­феру, отражаясь от их поверхности и могут распространяться по естест­венным радиотрассам на значительные расстояния без существенной потери энергии поверхностными и пространственными волнами.

Т.к. длина волныСДВ диапазона соизмерима с расстоянием до нижней границы ионосферы, то понятие простой и поверхностной волны теряет смысл.

Процесс распространения RVрассматривается как происходящий в сферическом волноводе:

Внутренняя сторона - земля

Внешняя сторона (ночью - слой Е, днем - слой Д)

Волноводный процесс характеризуется незначительными потерями энергии.

Оптимальные RV – 25 ÷ 30 км

Критические RV (сильное затухание) - 100 км и более.

Присущи явления: - замирания, радиоэха.

Замирания (фединги) в результате интерференции RV, прошедших раз­ные пути и имеющие разные фазы в точке приема.

Если в противофазе в точке приема поверхностная и пространственная волна, то это фединг.

Если в противофазе в точке приема пространственные волны, то это дальний фединг.

Радиоэхо - это повторение сигнала в результате последовательного приема волн, отразившихся от ионосферы разное число раз (ближнее ради­оэхо) или пришедших в точку приема без и после огибания земного шара (дальнее радиоэхо).

Земная поверхность имеет устойчивые свойства , а места измерения условий ионизации ионосферы мало влияют на распространениеRV СДВ диапазона, то величина энергии радиосигнала мало изменяется в течение суток, года и вэкстремальных условиях.

В диапазоне км волн хорошо выражены и поверхностная и пространствен­ная волны (и днем, и ночью), особенно на волнах λ> 3 км.

Поверхностные волны при излучении имеют угол возвышения не более 3-4 градусов, а пространственные волны излучаются под большими углами к земной поверхности.

Критический угол падения RV км диапазона очень мал (днем на слой Д, а ночью на слой Е). Лучи с углами возвышения, близко к 90 ° отражаются от ионосферы.

Поверхностные волны км диапазона, благодаря хорошей дифракционной способнос­ти, могут обеспечить связь на расстояние до 1000 км и более. Однако с расстоянием эти волны сильно затухают. (На 1000 км поверхностная вол­на по интенсивности меньше пространственной).

На очень большие расстояния связь осуществляется только прост­ранственной км волной. В области равной интенсивности поверхностной и пространственной волн наблюдается ближний фединг. Условия расп­ространения км волн практически не зависят от сезона, уровня солнечной активности, слабо зависят от времени суток (ночью уровень сигнала боль­ше).

Прием в км диапазоне редко ухудшается из-за сильных атмосфер­ных помех (гроза).

При переходе от КМ (ДВ) км к гектометровому диапазону уменьшается проводимость земли и ионосферы. ε земли и приближается к ε атмос­феры.

Возрастают потери в земле. Волны глубже проникают в ионосферу. На расстоянии в несколько сот км начинают преобладать пространственные волны, т.к. поверхностные поглощаются землей и затухают.

На расстоянии примерно 50-200 км поверхностные и пространственные волны равны по интенсивности и может проявляться ближний фединг.

Замирания частые и глубокие.

С уменьшением λ глубина замираний возрастает при уменьшении дли­тельности запираний.

Особенно сильные замирания на λ больше 100 м.

Средняя длительность замираний колеблется от нескольких секунд (1 сек) до нескольких десятков секунд.

Условия радиосвязи в гектометровом диапазоне (СВ) зависят от сезона и времени суток, т.к. слой Д исчезает, а слой Е – выше, причем в слое Д большое поглощение.

Дальность связи ночью больше, чем днем.

Зимой условия приема улучшаются за счет уменьшения электронной плотности ионосферы и ослабляются в атмосферных полях. В городах при­ем сильно зависит от промышленных помех.

Распространение RV - декаметрового диапазона (КВ).

При переходе от СВ к КВ потери в земле сильно увеличиваются (зем­ля является несовершенным диэлектриком), в атмосфере (ионосфе­ре)-уменьшается.

Поверхностные волны на естественных радиотрассах КВ диапазона имеют малое значение (слабая дифракция, сильное поглощение).


1 Классификация видов модуляции, основные характеристики радиосигналов.

Для осуществления радиосвязи необходимо каким-то образом изменять один из параметров радиочастотного колебания, называемого несущим, в соответствии с передаваемым низкочастотным сигналом. Это достигается с помощью модуляции радиочастотного колебания.

Известно, что гармоническое колебание

характеризуется тремя, независимыми параметрами: амплитудой, частотой и фазой.

Соответственно различают три основных вида модуляции:

Амплитудная,

Частотная,

Фазовая.

Амплитудной модуляцией (АМ) называют такой вид воздействия на несущее колебание, в результате которого его амплитуда изменяется по закону передаваемого (модулирующего) сигнала.

Считаем, что модулирующий сигнал имеет вид гармонического колебания с частотой W

много меньшей частоты несущего колебания w.

В результате модуляции амплитуда напряжения несущего колебания должна изменяться пропорционально напряжению модулирующего сигнала uW (рис. 1):

UAM = U + kUWcosWt = U + DUcosWt, (1)

где U - амплитуда напряжения несущего радиочастотного колебания;

DU=kUW - приращение амплитуды.

Уравнение амплитудно-модулированных колебаний, в этом случае, принимает вид

UAM = UAM coswt = (U + DUcosWt) coswt = U (1+cosWt) coswt. (2)

По такому же закону будет изменяться и ток iAM при модуляции.

Величина, характеризующая отношение величины изменения амплитуды колебаний DU к их амплитуде в отсутствии модуляции U, называется коэффициентом (глубиной) модуляции

Из этого следует, что максимальная амплитуда колебаний Umax = U + DU = U (1+m) и минимальная амплитуда Umin= U (1-m).

Как нетрудно видеть из уравнения (2), в простейшем случае модулированные колебания представляют собой сумму трех колебаний

UAM = U(1+ mcosWt)coswt = Ucoswt U/2+ cos(w - W)t U/2+ cos(w + W)t . (4)

Первое слагаемое – колебания передатчика в отсутствии модуляции (режим молчания). Вторые – колебания боковых частот.

Если модуляция осуществляется сложным низкочастотным сигналом со спектром от Fmin до Fmax , то спектр полученного АМ сигнала имеет вид, изображенный на рис. Занимаемая АМ - сигналом полоса частот Δfс не зависит от m и равна

Δfс = 2Fmax . (5)

Возникновение колебаний боковых частот при модуляции приводит к необходимости расширения полосы пропускания контуров передатчика (и, соответственно, приемника). Она должна быть

где Q - добротность контуров,

Df - абсолютная расстройка,

Dfк - полоса пропускания контура.

На рис. спектральные составляющие, соответствующие нижним модулирующим частотам (Fmin) имеют меньшие ординаты.

Это объясняется следующим обстоятельством. У большинства видов сигналов (например, речевых), поступающих на вход передатчика, амплитуды высокочастотных составляющих спектра малы по сравнению с составляющими низких и средних частот. Что касается шумов на входе детектора в приемнике, то их спектральная плотность постоянна в пределах полосы пропускания

приемника. В результате коэффициент модуляции и отношение сигнал-шум на входе детектора приемника для высоких частот модулирующего сигнала оказываются малыми. Для увеличения отношения сигнал-шум высокочастотные составляющие модулирующего сигнала при передаче подчеркиваются путем усиления высокочастотных составляющих в большее число раз по сравнению с составляющими низких и средних частот, а при приеме до или после детектора во столько же раз ослабляются. Ослабление высокочастотных составляющих до детектора происходит практически всегда в высокочастотных резонансных цепях приемника. Необходимо отметить, что искусственное подчеркивание верхних модулирующих частот допустимо, пока оно не приводит к перемодуляции (m > 1).



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows