Как установить кулеры в корпус компьютера. Система водяного охлаждения для ПК своими руками: рекомендации и пошаговая инструкция

Как установить кулеры в корпус компьютера. Система водяного охлаждения для ПК своими руками: рекомендации и пошаговая инструкция

19.10.2019

Добрый день, Друзья! Сегодня мы будем говорить на тему охлаждения ПК : откуда берется тепло, чем чревато перегрев компьютера и как бороться с высокими температурами внутри системного блока.

Комфортный температурный режим для компьютер важен не менее, чем для его владельца. Чем выше температура на улице и в комнате, тем острее встает проблема эффективного охлаждения ПК.

Чтобы правильно и с минимальными затратами решить проблему перегрева, необходимо хотя бы в общих чертах представлять себе, что из себя представляют системы охлаждения, зачем они вообще нужны компьютерам и к каким последствиям может привести “перегрев”.

Компьютер, как и любой электроприбор, рассеивает часть полученной электроэнергии в виде тепла. Основными источниками тепла являются центральный процессор, материнская плата и графический процессор видеокарты.

Основными причинами роста тепловыделения компонентами ПК являются:

  • рост тактовых частот процессора и шины памяти;
  • рост числа ячеек памяти в чипах ПК;
  • увеличение потребляемой мощности компонентами компьютера.

Таким образом, чем мощнее у вас ПК, тем больше энергии он потребляет, а, следовательно, больше тепла выделяет. Тенденции на минимизацию сокращают свободное пространство внутри системного блока, и, вместе с тем, усугубляют проблему теплоотвода для ПК.

Последствия перегрева компьютера

Очень часто мы недовольны медленной работой компьютера или его периодическим зависанием. А причина, зачастую, тривиальна – компьютеру “жарко”. В лучшем случае сработает “рефлекс” (система защиты) и компьютер перезагрузиться, а если не повезет, то могут выйти из строя несколько компонентов.

Наибольшую опасность высокие температуры представляют для элементной базы (микросхемы, конденсаторы, транзисторы и т.д.), особенно для жесткого диска. Перегреваясь, он работает в сбойном режиме (записывает данные неправильно). После перезагрузки и охлаждения есть вероятность, что Вы не обнаружите своих сохраненных данных на носителе информации.

Теперь, мне кажется, все прониклись важностью рассматриваемого вопроса.

Способы определения тепловыделения компьютера

1. Можно изучить документацию к компонентам ПК и посчитать общее тепловыделение. Но это не очень удобно, да и в итоге получим высокую погрешность измерения.

2. Я советую воспользоваться сайтами, предоставляющие сервис для расчета тепловыделения и потребляемой мощности (например, emacs.ru/calc). Очень удобно и легко, компонентная база постоянно пополняется.

Если температура внутри блока выше 35 градусов, а температура процессора более 60 градусов (для жесткого диска критичной является температура 45 градусов), то пора принимать меры по модернизации охлаждающей системы.

1. Обратите внимание на расположение системного блока: обеспечьте свободный воздух ко всем вентиляционным отверстиям.

2. Свободное пространство от задней стенки “системника” примерно должно быть равно двум расстояниям диаметра вытяжного вентилятора.

3. Обязательное наличие кулеров на центральном процессоре, графическом процессоре видеокарты и в блоке питания.

4. Для более мощных компьютеров, или в более жарких условиях, применяются дополнительные кулера для микросхем северного моста, жестких дисков и дополнительный вытяжной кулер на задней стенки корпуса ПК.

5. Забор воздуха должен осуществляться внизу и спереди (наиболее “холодная” зона), а вывод теплого воздуха производиться в верхней задней части блока питания.

6. Использовать возможность дополнительного забора воздуха для графического адаптера через заглушки PCI.

7. Использовать возможность естественной вентиляции отсеков жестких дисков за счет слегка отогнутых заглушек свободных отсеков.

8. Увеличить по возможности аэродинамическое сопротивление внутри системного блока:

  • обеспечить внутри корпуса компьютера достаточно места для прохода воздуха;
  • аккуратно уложить кабеля внутри системника, используя стяжки;
  • в месте забора воздуха установить пылезадерживающий фильтр (не забывайте его регулярно чистить).

9. Регулярно (примерно, раз в три месяца) производить чистку компьютера от пыли.

10. Если есть возможность, раз в год меняйте термопасту на центральном процессоре.

“Правильный” вентилятор

Если уровень шума для вас не очень важен, то можете устанавливать высокооборотистые кулера. Если же “шумность” компьютера играет не последнюю роль, то советую установить “толстые” низкооборотистые вентиляторы болешего размера.

Также обращайте внимание на зазор между лопастями и ободом вентилятора: он должен быть не больше 2 мм (в идеале, десятые доли мм). Иначе эффективность такого вентилятора будет очень низкой.

Что лучше: воздух или вода?

Такой вопрос очень часто интересует людей, которые сами собирают компьютер или интересуются вопросом его модернизации. Однозначно лучше вода: теплоемкость в два раза выше, чем у воздуха, а плотность – в 800 раз. Т.е. при прочих равных условиях вода отводит в 1500 раз больше тепла, чем воздух.

Шумность такой конструкции примерно такая же, а вот сложность намного выше. Отсюда большой минус – изменить конфигурации ПК после установки водяной системы охлаждения будет сложнее.

Наиболее эффективным и интересным вариантом являются термотрубки.

Термотрубки

Термотрубки представляют собой совокупность двух трубок одна в другой, герметичные и заполненные теплоносителем. Работает следующим образом: в нагретой части проводник испаряется и виде пара переносится в охлаждаемую область, там образуется конденсат, который по внутренней трубке возвращается в нагреваемую область.

Такие трубки компактны и практически бесшумны. Высокая теплопроводность достигается благодаря технологическим особенностям: тепло распространяется со скоростью звука.

Один нюанс, о котором замалчивают производители, — температура закипания теплоносителя. А именно этот показатель и определяет тот порог, при котором термотрубки из обычных кулеров превращаются в высокоэффективные системы теплоотведения. Перед покупкой внимательно изучите документацию, рекомендуемая температура закипания теплоносителя – 35-40 градусов.

Термопаста заполняет неровности в месте контакта кулера и процессора, тем самым значительно повышая эффективность теплопереноса между ними.

1. Перед использованием новой термопасты, уберите с поверхности процессора остатки старой. Для этого лучше использовать специальные салфетки.

2. Используйте термопасту с высокой теплопроводностью и низкой вязкостью.

3. Не разбавляйте термопасту, вы тем самым снижаете ее теплопроводность.

4. Не наносите слишком термопасты, эффективность от этого не повысится.

После покупки компьютера мало кто обращает своё внимание на то, что в корпусе установлен только один малопродуктивный вентилятор, а то и вовсе корпус не комплектуется вентиляторами.

Также, мало кто знает, что винчестеры (HDD объёмом свыше 250 Gb), нуждаются в принудительном охлаждении.

Почти никто не обращает внимание на "слабенькую" систему охлаждения северного и южного мостов материнской платы, которым крайне необходим дополнительный обдув воздухом в корпусе.
Потом недоумевают, отчего радиаторы чипсета так сильно греются.

Не каждый пользователь может себе позволить приобрести дорогой корпус, с установленной дополнительной системой продувки корпуса.

Но каждый пользователь должен позаботится о достаточном охлаждении своих комплектующих, для без проблемной эксплуатации компьютера.

Итак!
Начнём с того, что когда вы приобрели корпус и в нём не оказалось ни одного корпусного вентилятора, то вам придётся их докупить отдельно.
Лучше, если это будут вентиляторы размера 120-мм и 1000-1300 об/мин. Главное чтобы в корпусе были оборудованы для них посадочные места:

Почему 120-мм? Просто 120-ки имеют самый низкий уровень шума при самой высокой производительности.

Затем устанавливаем их в специально отведённые места для корпусных вентиляторов:

Причем, спереди на вдув ("вдох"), чтоб он обдувал, установленные в своих посадочных местах, винчестеры (HDD).

Примечание: вентилятор всегда дует в направлении от крыльчатки к своему корпусу, проще говоря от наклейки.

А сзади устанавливаем на выдув ("выдох"), чтобы обеспечить проточную циркуляцию воздуха.

Также участвует в циркуляции воздуха и вентилятор блока питания. Вместе с задним корпусным вентилятором, они обеспечивают выброс тёплого воздуха за пределы корпуса ПК.
Организуя, таким образом, проточную циркуляцию воздуха в корпусе по ниже указанной схеме:

Данная схема обеспечивает максимальную эффективность вентиляции бюджетного корпуса .

Единое, что можно посоветовать - это заведомо выбирать бюджетный корпус, в которых присутствуют посадочные места под вентиляторы 120-мм.
Если, вы уже стали обладателем корпуса в котором нет таких посадочных мест, то вам остаётся только установить максимально допустимый размер вентилятора, например 80-мм или 92-мм.

Ещё одним моментом требующего внимания, является телескопический заборник воздуха. Который крепиться на боковой стенке корпуса:

Почему-то производители корпусов решили, что этот заборник улучшит охлаждение процессора. Но на самом деле это не так.
Причиной этому служит несовпадение месторасположения процессорного кулера и телескопического воздухозаборника.

Мы же в свою очередь, провели тесты работы процессора в разных корпусах(от разных производителей) и с разными положениями заборника, а также вообще без него.

Результаты показали что: процессор имел самую низкую температуру, в процессе прогона его стресс-тестом OCCT 3.1.0, при полностью снятом телескопическом воздухозаборнике.
Выходит, он только мешает свободному протоку воздуха.
Поэтому мы рекомендуем снимать его с боковой стенки корпуса:


Итак. При правильной организации протока воздуха внутри системного блока, Вам обеспечивается заметное снижение температуры всех компонентов системы.
Что в следствии обеспечит стабильную работу всей вашей системы.
А иногда, эти пару градусов спасут вашу систему от перегрева и выхода из стоя дорогих комплектующих. Например в жаркое лето.

Охлаждение различных компонентов - одна из любимых тем оверклокеров (впрочем, не только их). Большое значение тут имеет хорошая вентиляция корпуса - ведь, снизив в нем температуру хотя бы на пару градусов, мы на столько же снизим и температуру всех находящихся внутри элементов. К сожалению, более-менее точной методики расчета вентиляции корпуса мне пока не встречалось. Зато в избытке из статьи в статью кочуют общие рекомендации, которые от частого употребления забронзовели и критически уже не воспринимаются.

Вот самые распространенные из таких мифов:

  1. Производительность вентиляторов на вдув должна примерно соответствовать производительности вентиляторов на выдув
  2. Впускать холодный воздух надо обязательно снизу, а выпускать сверху
  3. Чем больше в корпусе заполнено слотов расширения и 5-дюймовых отсеков, тем хуже его вентиляция
  4. Замена обычных шлейфов круглыми заметно улучшает вентиляцию корпуса.
  5. Передний вентилятор заметно снижает температуру в корпусе.

В результате борьба за вентиляцию корпуса зачастую сводится к установке вентиляторов максимально возможного размера и производительности во все штатные места, после чего в руки берется дрель (ножовка, электролобзик, зубило, кувалда, "болгарка", автоген - нужное подчеркнуть:-), и вентиляторы засовываются в нештатные места. После этого для пущего эффекта добавляется пара вентиляторов внутрь корпуса - обычно на обдув видеокарты и винчестера.

О затратах времени, сил и средств на все это лучше не говорить. Правда, результат обычно бывает неплохой, но вот шум, испускаемый этой "батареей" на полных оборотах, выходит за все мыслимые рамки, да и пыль он сосет со скоростью пылесоса. Как следствие, скоро корпус начинает обрастать фенбасами и реобасами, становясь похожим на микшерский пульт средней руки. А процесс запуска игры вместо простого кликанья мышкой теперь напоминает подготовку к взлету авиалайнера - надо не забыть прибавить обороты всем этим вентиляторам. В этой статье я постараюсь показать, как можно добиться похожего эффекта "малой кровью".

Бег по диагонали

Все массовые корпуса можно разделить на три вида - десктоп, тауэр с верхним (горизонтальным) БП и тауэр с боковым (вертикальным) БП. Основную долю рынка занимают два последних. У каждого есть свои достоинства и недостатки, но наихудшим с точки зрения вентиляции считается третий вид - тут процессор оказывается в непродуваемом "кармане" рядом с блоком питания, и организовать туда подачу свежего воздуха достаточно трудно.

Общие принципы вентиляции достаточно просты. Во-первых, вентиляторы должны не мешать естественной конвекции (снизу вверх), а помогать ей. Во-вторых, нежелательно иметь непродуваемые застойные зоны, особенно в местах, где естественная конвекция затруднена (в первую очередь это нижние поверхности горизонтальных элементов). В-третьих, чем больше объем воздуха, прокачиваемого через корпус, тем меньше в нем разница температур по сравнению с "забортной". В-четвертых, поток очень не любит различных "выкрутасов"- изменения направления, сужения-расширения и т.п.

Как происходит воздухообмен? Допустим, вентилятор закачивает воздух в корпус, при этом давление в нем растет. Зависимость расхода от давления называется рабочей характеристикой вентилятора. Чем больше давление, тем меньше будет закачивать воздух вентилятор и тем больше его будет выходить через вентиляционные отверстия. В какой-то момент количество закачиваемого воздуха сравняется с количеством выходящего, и давление дальше повышаться не будет. Чем больше площадь вентиляционных отверстий, тем при меньшем давлении это произойдет и тем лучше будет вентиляция. Поэтому простым увеличением площади этих отверстий "без шума и пыли" иногда можно добиться большего, чем установкой дополнительных вентиляторов. А что изменится, если вентилятор не вдувает, а выдувает воздух из корпуса? Поменяется только направление потоков, расход останется тем же самым.

"Классические" варианты организации вентиляции корпуса с верхним БП показаны на рис.1-3. Собственно, это фактически три разновидности одного и того же способа, когда воздух идет по диагонали корпуса (от переднего нижнего угла в задний верхний). Красным цветом показаны непродуваемые зоны. От того, насколько плотно они заполнены, сопротивление потоку никак не зависит - он все равно проходит мимо них. Обратите внимание на нижнюю зону, в которой находится видеокарта - один из самых критических к перегреву компонентов компьютера. Установка переднего вентилятора позволяет подать к ней (а заодно и к южному мосту) немного свежего воздуха, сбив температуру на пару градусов. Правда, при этом "на обочине жизни" оказывается винчестер (если он установлен в штатное место). На рис.4 показано, почему так происходит. Тут схематически представлены потоки воздуха через вентилятор (более темный цвет соответствует большей скорости). Со стороны всасывания воздух входит равномерно со всех сторон, при этом его скорость по мере удаления от вентилятора быстро падает. Со стороны нагнетания "дальнобойность" воздушного потока заметно больше, но только вдоль оси - в стороне от нее образуется непродуваемая зона. Такая же "аэродинамическая тень" получается и за втулкой вентилятора, но она быстро сходит на нет.

Для иллюстрации приведу пример из жизни. В поисках наилучшего способа охлаждения своего десктопа, я перевернул вентилятор в БП на вдув. По идее, это должно улучшить охлаждение БП - ведь теперь он обдувается свежим воздухом, а не б/у из корпуса. Однако термодатчик БП показал прямо противоположное - температура выросла на 2 градуса! Как такое могло произойти? Ответ прост - плата с датчиком установлена в стороне от вентилятора и поэтому оказалась в аэродинамической тени. Поскольку вместе с термодатчиком в этой тени оказались и некоторые другие элементы, во избежание выхода их из строя был восстановлен статус кво.

Критерий истины

Теперь от теории перейдем к практике. Наша главная задача - увеличить площадь вентиляционных отверстий, причем желательно быстро и без применения слесарных инструментов. Их площадь должна быть как минимум равна эффективной площади вентилятора (то есть площади, ометаемой лопастями), а лучше превышать ее раза в полтора. Например, для 80-мм вентилятора эффективная площадь равна примерно 33 кв.см. Если вентиляторов несколько и они все работают на выдув (или, наоборот, все на вдув), их эффективная площадь складывается. Особенно эта мера актуальна для корпусов старых конструкций, которые еще помнят Пентиум-2 и тем не менее продолжают выпускаться (и продаваться) до полного износа штампов.

К подобным "ветеранам" относится и мой десктоп Codegen, переживший уже три материнки. Из "удобств" он имеет место под 90-мм передний вентилятор, который по мысли конструкторов должен засасывать воздух через щель внизу передней панели площадью всего 5 кв. см., да символические дырочки диаметром 1,5 мм напротив него (позже я их рассверлил в шахматном порядке до 4 мм - так даже красивее стало). Разумеется, корпус не подводная лодка, воздух будет подсасываться и через другие мелкие щели и неплотности, точный учет которых невозможен. Но все равно вентиляция в штатном режиме напоминает бег в противогазе.

Конфигурация компьютера при тестировании:

  • CPU Athlon T-red-B 1,6v. 1800+@166Х11, кулер Evercool ND15-715 подключен через 3-поз. переключатель (использовалась вторая скорость, 2700 об/мин)
  • M/b Epox 8RDA3, обдув моста отключен
  • video Asus 8440 Deluxe (GF4ti4400), акт. кулер закрывает чип и память.
  • 512 Mb RAM Hynix
  • HDD Samsung 7200 об/мин
  • CD-ROM, FDD, Rack-контейнер
  • Modem
  • TV/capture card Flyvideo
  • БП Codegen 250w
  • Суммарная мощность (без БП) - порядка 180 Вт

Температура процессора мерялась через Сандру, видеокарты - по встроенным датчикам через SmartDoctor, в корпусе под верхней крышкой над процессором (не забыли - корпус десктоп) был размещен выносной датчик электронного термометра, вторым датчиком этого термометра измерялась температура в комнате. Затем результаты были приведены к внешней температуре 23 градуса.

Система нагружалась запуском в цикле игровых тестов 3DMark2001SE. В исходном состоянии температура в корпусе превышала внешнюю на 15 градусов, температура видеокарты (чип/память) была больше на 55/38 град., процессора на 39 град. Для сравнения были проведены измерения с открытой крышкой. Результаты: температура видеокарты больше внешней на 44/30 градусов, процессора - на 26 градусов.

Сначала попробуем пойти по традиционному пути. Какая первая мысль приходит в голову при взгляде на этот корпус? "Раз есть отверстие под вентилятор, так должно же там хоть что-то стоять" (вполне по "Золотому теленку"). Ну что же, поставим. Каков результат? Датчик температуры в корпусе вообще не отреагировал на наши манипуляции, температура процессора снизилась на 1 градус, а видеокарты на 4-5 градусов (кстати, примерно такой же результат дал и другой традиционный шаг - установка рядом с видеокартой бловера Gembird SB-A). Собственно, на этом "традиционный путь" и заканчивается.

Теперь все вернем в исходное состояние и пойдем другим путем - вытащим две заглушки слотов расширения рядом с видеокартой. Этим убивается сразу два зайца: появляется новая "дыра" для вентиляции корпуса и ликвидируется застойная зона у видеокарты. Вдобавок выломаем защитную "гребенку" у переднего воздухозаборника (благо он снизу и его все равно не видно) - его площадь при этом утроится, а суммарный размер вентиляционных отверстий составит 45 кв. см.

Результат не заставил себя ждать - температура в корпусе упала на два градуса, а видеокарта порадовала еще больше, скинув сразу 9 градусов на чипе и 7 градусов на памяти. Согласитесь, неплохой результат, к тому же совершенно бесплатный. Этот вариант можно рекомендовать для карт с пассивным кулером как альтернативу установке вентилятора. А если этого мало? Добавление переднего вентилятора на вдув приводит к парадоксальному результату - температура и корпуса, и видеокарты... повышается! Немного, всего на один градус, но тем не менее... Объясняется это просто - теперь больше воздуха входит в корпус через переднее отверстие и меньше - через заднее мимо видеокарты.

А если поставить его на выдув? Тут совсем другое дело. Оба вентилятора (в БП и дополнительный) теперь включены параллельно, их расходы складываются, и вот вам результат - видеокарта "похолодала" еще на 3-4 градуса, а общее понижение температуры по сравнению с исходным вариантом составило 12 градусов по видеочипу, 10 градусов по видеопамяти и 5 градусов в корпусе (и, соответственно, у процессора). Обратите внимание, что видеокарта здесь холоднее, чем в открытом корпусе! Расходы же ограничились покупкой одного корпусного вентилятора средней мощности.

Наконец, последний вариант, "экстремальный" - все три вентилятора (БП, передний и бловер) на выдув, дополнительно сзади открываем еще один слот. Бловер был установлен в нижнем (из двух) пятидюймовом отсеке вместо вынутого Rack-контейнера. Результаты - процессор "похолодал" по сравнению с предыдущим вариантом на 4 градуса (и теперь на те же 4 градуса горячее самого себя в открытом корпусе), а видеокарта скинула еще пару градусов. Правда, датчик температуры в корпусе никакого снижения не показал - холодный воздух проходит ниже его, поскольку дополнительные вентиляторы забирают воздух не сверху, а из середины корпуса. Общие результаты сведены в таблицу. На ней показана абсолютная температура компонентов, приведенная к 23 градусам в комнате.

Снизу вверх, наискосок

Теперь, когда мы уяснили и проверили на практике общие принципы эффективной вентиляции, применим их к самому распространенному корпусу - тауэру с верхним БП.

На рис.6 показан самый эффективный способ охлаждения такого корпуса. Дополнительный вентилятор на задней стенке фактически обеспечивает такой же режим продувки, как в моем последнем эксперименте. Поскольку практически половина тепла выделяется процессором, есть смысл подавать часть холодного воздуха непосредственно в зону его работы. Это осуществляется через свободный трехдюймовый или пятидюймовый отсек на передней стенке - обе его заглушки (пластмассовая и металлическая) удаляются, а уж как декорировать образовавшуюся дыру - вопрос умения и фантазии. В простейшем случае можно купить панельку с парой маленьких вентиляторов (которые сразу снять, толку от них ноль), благо таких "прибамбасов" для пятидюймовых отсеков выпускается множество разновидностей - от обычной решетки до панелек со встроенным электронным индикатором, USB-портами или фенбасами (хотя площадь решетки у них меньше).

Неплохую продувку обеспечивает и установка Rack-контейнера. Учтите, что все это хозяйство надо ставить в самый нижний отсек. Выбор конкретного варианта зависит от того, что в первую очередь надо "заморозить". Если перегревается процессор или память, отверстия надо сделать побольше, а если видеокарта - можно вообще обойтись без них, зато внизу открыть побольше слотов. Суммарная площадь отверстий при этом должна быть как минимум 70-80 кв. см. в зависимости от размера вентиляторов. Для справки: площадь одного отверстия слота равна 13 кв. см., открытого трехдюймового отсека - 30 кв. см., пятидюймового - 15-30 кв. см. с вышеописанной декоративной решеткой и 60 кв. см для полностью открытого. Еще 10-15 кв. см. может дать удаление заглушек с отверстий под порты на задней стенке. Ах да, чуть не забыл, есть же еще штатный воздухозаборник в нижней части передней панели площадью 5-30 кв. см., а у некоторых корпусов еще и дырочки в боковых стенках.

Если на верхней панели есть штатное отверстие под вентилятор, грех его не использовать. Поставьте туда что-нибудь не слишком мощное на выдув. Если такого отверстия нет, вырезать его не стоит. Лучше купите специальный бловер и установите его в самый верхний 5-дюймовый отсек (рис. 7). Это будет особенно полезно тем, у кого по какой-либо причине отсутствует отверстие под дополнительный вентилятор под БП или оно задействовано для непосредственного охлаждения процессора. Но в этом варианте стоит сделать воздуховод, направляющий свежий воздух из нижнего пяти- или трехдюймового отсека в зону процессора. Без него значительная часть этого потока может сразу уйти в бловер, не захватив по дороге достаточно тепла.

На рис. 8 показана довольно экзотическая схема с нижним вентилятором, работающим на выдув. Она хуже двух предыдущих и может использоваться лишь в крайнем случае, когда в первую очередь надо охладить видеокарту. Фактически эта схема обеспечивает два независимых потока - первый (нижний, от задней стенки к передней) охлаждает видеокарту, платы расширения и южный мост, а второй (от передней стенки к задней) охлаждает верхнюю половину корпуса. Преимущества такой схемы - увеличивается суммарная производительность вентиляторов на выдув, значительная часть горячего воздуха от видеокарты сразу удаляется наружу, меньше общее сопротивление потоку в корпусе.

Но есть и существенные недостатки. Главный из них в том, что в угоду дизайну нижние отверстия в передней стенке, через которые выдувается воздух, обычно имеют площадь намного меньшую, чем эффективная площадь переднего вентилятора. Вдобавок потоку приходится дважды менять направление, что он очень не любит. В результате получается тот же "бег в противогазе" - например, если отверстие в корпусе вдвое меньше, чем у вентилятора, производительность последнего тоже падает примерно вдвое, и это еще без учета противодавления в корпусе. А вот шум, наоборот, будет больше - просачиваясь через узкие щели, маленькие отверстия, затейливые "загогулины" и прочие дизайнерские изыски в передней панели, поток воздуха может издавать отнюдь не художественный свист. Вдобавок шум переднего вентилятора (в отличие от заднего) не экранируется корпусом.

Повысить эффективность переднего вентилятора можно, если впустить дополнительный воздух в полость между передней панелью и металлической передней стенкой корпуса. Для этого пойдем по проторенному пути - вытащим пластмассовую (на этот раз только пластмассовую!) заглушку нижнего трехдюймового отсека. Но ведь нам надо еще подать холодный воздух в верхнюю половину корпуса, причем тоже спереди. Эти потоки надо разделить с помощью перегородки под нижним пятидюймовым отсеком.

Теперь посмотрим на движение потока в корпусе. В первой и второй схеме основной поток движется снизу вверх. Сопротивление потоку определяется самым узким местом на его пути. В данном случае это сечение на уровне видеокарты: она сама занимает добрую половину корпуса, а с другой стороны стоит винчестер с торчащим шлейфом. Поскольку видеокарту в другое место сдвинуть нельзя, остается переставить винчестер. Его можно опустить вниз или поставить в один из 5-дюймовых отсеков (лучше в тот, который используется в качестве воздухозаборника). В обоих случаях винчестер будет отлично обдуваться, что благотворно скажется на его здоровье. Впрочем, самое узкое место на пути потока на самом деле не здесь, а при входе в корпус - там его скорость больше на порядок, а аэродинамические потери пропорциональны квадрату скорости. Поэтому "прилизывание" и укладка шлейфов с точки зрения воздухообмена практически ничего не дает.

Слышу, слышу ехидные голоса - а как же страшилки про пыль, которую при установке всех вентиляторов на выдув якобы будет засасывать в диких количествах через CD-ROM и FDD? Отвечаю. Воздух идет по пути наименьшего сопротивления и при хорошей вентиляции не пойдет в узкие щели, когда рядом есть большие окна. Да и штатная система вентиляции, напомню, работает на выдув, причем в брендовых корпусах и ноутбуках тоже (а там не дураки сидят, как любят говорить некоторые коллеги, когда другие аргументы заканчиваются:-)

В заключение скажем пару слов про тауэры с боковым БП. Несмотря на большое количество отверстий, расположенных в самых неожиданных местах, вентиляция у этих корпусов отвратительная. Если обдув видеокарты еще можно улучшить традиционным способом (открыванием соседних слотов), то с процессором придется повозиться. Для хорошего продува его "кармана" нужно как-то удалить оттуда горячий воздух. Самое эффективное - врезка в верхнюю панель вентилятора на выдув, но это весьма трудоемко. Поэтому попробуем альтернативные способы. В корпусах InWin вверху на задней стенке есть вентиляционные отверстия непонятного назначения - теплый воздух оттуда выходить не будет, т.к. в корпусе разрежение от вентилятора БП, а подача холодного воздуха под самый потолок малоэффективна. Чтобы они не пропадали, поставьте там бловер на выдув. В корпусах, где нет и этого, бловер можно направить вперед и соединить воздуховодом с пустым пятидюймовым отсеком (разумеется, вытащив из него обе заглушки, рис.9).

Другой вариант - установка БП с мощным вентилятором, в котором забор воздуха осуществляется только со стороны "кармана". В продаже встречаются БП, имеющие на боковой стенке 120-мм вентилятор - по идее, его должно хватить для хорошего проветривания. Можно сделать и наоборот - подать вентилятором или бловером по воздуховоду в эту зону свежий воздух в расчете на то, что струя "добьет" до непродуваемых уголков. В общем, поле для экспериментов эти корпуса дают необъятное.

Еще осталось несколько мифов по поводу выбора вентиляторов... но этому вопросу стоит посвятить отдельную статью.

Владимир Куваев aka kv1

Всем бодрого времени суток))) Как и обещал, постараюсь максимально подробно изложить процесс изготовления данной модификации корпуса. Для начала прошу прощения у модераторов данного проекта, т.к. используются ссылка, а используемые фотографии сделаны в разное время и не все имеют прямое отношение к данной модификации, хотя максимально приближены. Но, ссылка с данного сайта)))) Итак, приступим. Для этого нам потребуется: (а) твердая уверенность необходимости модификации Вашего корпуса, (б) обычная сантиметровая линейка, (в) циркуль либо простой карандаш + тонкий маркер, цветом отличающимся от цвета корпуса, (г) дрель либо шуруповерт с двумя сверлами (на 4 и на 8), (д) электролобзик с установленным на нем полотном (пилкой) по металлу, (е) крестовая отвертка,вентилятор и крепления (винты), (ж) защитное приспособление (решетка, сетка, либо без оного). Далее, по порядку: а) Необходимо выяснить местоположение нашей модификации. В моем случае - напротив и чуть пониже видеокарты, чтобы поток свежего воздуха дул непосредственно на видеокарту. Также можно подать поток воздуха на жесткий диск, центральный процессор, северный либо южный мост материнской платы, совсем редкий случай - на блок питания. б) Линейкой выясним диаметр (диаметр вентилятора) вырезаемого в корпусе отверстия, который можно будет нарисовать (в) циркулем на стенке корпуса. Либо же обведем внутреннюю часть вентилятора карандашом либо маркером на данной поверхности..jpg г) Дрель и сверла нам понадобятся для сверления отверстий в корпусе. Сверло на 8 - чтобы вставить пилку от (д) лобзика и начать пилить (на фото красным), а сверло на 4 - чтобы прикрепить винтами вентилятор. Выпилив необходимый радиус приступим к креплению. Для этого нам нужно разметить крепежные места от (е) вентилятора и высверлить их (на фото черным). (ж) Решетку либо ее аналог (все что душе угодно, даже можно обойтись без нее. Но я использовал защитную решетку от блока питания, т.к. в доме маленький ребенок) будем крепить одновременно с вентилятором винтами, которые идут в комплекте почти со всеми "карлсонами" с магазина. После крепления, я подал на вентилятор питание. Использовал разъем на материнской плате и понижающий обороты резистор.

» Компьютер перегревается — как охладить

В летнюю жару все больше обращений от юзеров, что компьютер стал внезапно выключаться, вырубаться,виснуть — скорее всего он перегревается . Как же его охладить? Смотрим далее.

Подобно математику и философу Рене Декарту пойдем от простого к сложному. Повторение прописных истин об охлаждении ПК иногда помогает понять, что же было упущено. Итак…

Как охладить компьютер при перегреве

  1. Системный блок лучше опустите пониже (в идеале - на пол, на специальную подставку на колесиках). Из школьного курса физики все наверняка помнят, что горячий воздух обычно поднимается вверх, а холодный - опускается вниз.
  2. Исследуйте окружение системника - нет ли рядом занавесок, салфеток, кресел и другой домашней утвари, которая может мешать полноценному воздухообмену компьютера.
  3. Регулярно продувайте внутренности ПК пылесосом. Пыль и шерсть животных может очень ощутимо забивать кулеры, особенно на блоке питания.
  4. Настройте кулеры на передней панели на вдув, на задней - на выдув.
  5. Проследите, чтобы в системном блоке в таком случае не было больших зазоров (к примеру, дырки от вынутой панельки для привода).
  6. Провода внутри также не должны препятствовать циркуляции воздуха, потому их стоит аккуратно уложить и укрепить обычными хомутиками.
  7. Проверьте наличие термопасты и при потребности обновить ее (50-граммовый тюбик стоит копейки, а хватит его на 40-50 чисток). Для этого нужно снять кулеры с процессора и видеокарты и аккуратно оттереть спиртом от остатков старой термопасты, затем так же скрупулезно смазать поверхности контакта процессора и радиатора и поставить все на место.
  8. Если в корпусе стоит несколько винчестеров, их стоит поставить в слоты подальше друг от друга.
  9. По возможности не подключайте к ПК энергопотребляемые устройства вроде USB-холодильников, вентиляторов и прочего (особенно это касается ноутбуков, о которых мы поговорим ниже).
  10. Установите на ПК программу для проверки температуры «железа». Бесплатного ПО для этих целей достаточно. Нормальную температуру отдельных комплектующих нужно смотреть на сайте производителя.
  11. При потребности смените штатный кулер на более продвинутый. Советы по этому поводу смотрите во вставке «Выбирать кулер стоит по потребностям».

Мониторинг температуры ПК

Отдельно стоит поговорить о программах, отображающих температуру ПК. Подобное ПО считывает данные о температуре со специальных термодатчиков. Помимо датчиков на процессоре и материнской плате можно установить и дополнительные. Иногда такими датчиками комплектуются продвинутые компьютерные корпуса типа Ikonik Zaria A20 , их можно встретить и в устройствах типа Zalman ZM-MFC3. Кроме того, измерить температуру внутри корпуса можно мультиметром, имеющим такую опцию. Но вернемся к программным средствам. Их довольно много. Перечислим основные.

  1. Everest - программа, которая проведет диагностику компьютера и выдаст подробнейшую информацию как о его аппаратной части (процессор, материнская плата, монитор и видеоподсистема целиком, диски и т. д.), так и о программной начинке - операционная система, драйверы, все установленные и отдельно автозагружаемые программы, запущенные процессы, лицензии, хотфиксы и т. д. и т. п. Возможно выполнение теста проверки производительности компьютера и его сравнение с эталонными результатами. Выдает более 100 страниц информации, а также позволяет производить сетевой аудит и настройку компьютера на оптимальную работу.
  2. Core Temp - компактная программа без лишних функций, предназначенная для контроля температуры процессора. Core Temp может показывать температуру любого отдельного ядра в каждом процессоре, имеющемся в системе. С помощью этой утилиты можно в реальном времени наблюдать, как меняется температура ядра процессора в зависимости от нагрузки. Программа поддерживает всю серию процессоров Intel Core и Core 2, а также все процессоры фирмы AMD в линейке AMD64. Core Temp позволяет записывать изменения температуры процессоров в течение определенного времени с последующей передачей данных в Excel.
  3. MBProbe - утилита, предназначенная для отслеживания напряжений, температур и работы вентиляторов системы. Замечание: эту программу стоит использовать осторожно, зная принцип ее действия, так как обычно она распространяется в составе с небольшой утилитой, разрешающей некоторые запрещенные системой параметры безопасности.
  4. SpeedFan - бесплатная программа, которая следит за температурой, скоростью движения кулера и напряжением. SpeedFan также может отображать температуру жесткого диска, если устройство поддерживает эту опцию. Главной функцией SpeedFan является наблюдение за скоростью вращения кулера и ее изменение в зависимости от температуры внутри компьютера. Это помогает уменьшить шум и потребление электроэнергии. В последней версии улучшена поддержка видеокарт NVIDIA, а также доступ к информации S.M.A.R.T. с некоторых RAID-контроллеров, добавлена поддержка новых устройств.
  5. HDD Temperature - программа, которая отображает температуру жесткого диска. Она следит за состоянием жесткого диска и его температурой для предотвращения потери данных. Мониторинг температуры жесткого диска осуществляется за счет технологии S.M.A.R.T., которая применяется в большинстве современных винчестеров.
  6. HDD Thermometer - производит мониторинг температуры жесткого диска (дисков). В случае превышения заданного уровня может вывести звуковое сообщение, запустить внешнее приложение или выключить компьютер (либо ввести его в «спячку»). При этом программа различает два уровня нежелательной температуры HDD - повышенный и критический, и в зависимости от этого может действовать по разным сценариям. К примеру, при достижении планки «повышенная температура» выдается звуковой сигнал, а в случае превышения критической отметки компьютер будет выключаться. При необходимости результаты мониторинга могут записываться в лог-файл. Интерфейс - многоязычный. Для полноценного использования HDD Thermometer требуется бесплатная регистрация.
  7. NextSensor - простая в использовании и не требующая инсталляции утилита для мониторинга температур и напряжений в компьютере (CPU/ HDD), а также скорости вращения вентиляторов. Может выдавать сигнал при превышении допустимых параметров. Поддерживается удаленный мониторинг. Работает с сенсорами Winbond, Fintek и ITE Super I/O LPC.
  8. CPUCool - программа для уменьшения температуры процессора; кроме того, позволяет менять частоту FSB, оптимизировать работу процессора, а также производить мониторинг основных параметров материнской платы и температуры HDD.
  9. HWMonitor - утилита для контроля в режиме реального времени таких параметров компонентов ПК, как температура и напряжение в контрольных точках, а также скорости вращения вентиляторов.
  10. CPU-Z - это бесплатная прикладная программа для отображения технической информации о персональном компьютере пользователя, работающая под ОС Microsoft Windows всех версий, начиная с Windows 95 и вплоть до Windows 7. Программа определяет технические характеристики центрального процессора, видеокарты, материнской платы и оперативной памяти.

«Продвинутое» охлаждение компьютера

Наверняка все слышали о довольно сложных дополнительных системах охлаждения для ПК. Они бывают радиаторными, жидкостными, фреонными, жидкоазотными и жидкогелиевыми и охлаждения на базе жидкого металла. Используются такие системы в основном в оверклокинге, и острой потребности в них обычные пользователи не имеют. Собственно, это как сравнение потребностей автогонщика и обычного (даже продвинутого) автолюбителя. Отличие этих самых технических потребностей налицо. Системы водяного охлаждения пользуются заслуженной популярностью у оверклокеров. Принцип их действия основан на циркуляции теплоносителя. Нуждающиеся в охлаждении компоненты компьютера нагревают воду, а вода, в свою очередь, охлаждается в радиаторе. При этом радиатор может находиться снаружи корпуса и даже быть пассивным. Следует отдельно сказать о криогенных системах охлаждения для ПК, работающих по принципу смены фазового состояния вещества, подобно холодильнику и кондиционеру. Недостатком криогенных систем является высокий шум, большая масса и стоимость, сложность в инсталляции. Но только используя подобные системы, возможно добиться отрицательной температуры процессора или видеокарты, а соответственно, и высочайшей производительности. Стоит добавить пару слов о преимуществах сложных систем охлаждения. Они бесшумные, и в любой момент в ПК можно включить возможность принудительного усиленного охлаждения. Из минусов для рядового пользователя стоит отметить довольно высокую стоимость готовой системы, требование большой аккуратности при ее использовании и потребность в дополнительных аксессуарах при установке. В любом случае, эксперименты с такими типами охлаждения стоит проводить только при потребности - если у вашего ПК действительно огромные мощности.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows