Что такое переменный ток. Отличие переменного тока от постоянного

Что такое переменный ток. Отличие переменного тока от постоянного

19.09.2019

5.1. ЗАЧЕМ НУЖЕН ПЕРЕМЕННЫЙ ТОК?

В первых электротехнических установках применяли только постоянный ток. Однако вскоре выяснилось, что гораздо выгоднее использовать не постоянный, а переменный ток, т. е. такой, который периодически изменяет свое значение и направление.

Прежде всего переменный ток удобнее вырабатывать на электростанциях. Генераторы переменного тока проще и дешевле, чем аналогичные генераторы постоянного тока.

Выяснилось также, что передавать электрический ток по проводам выгоднее при высоком напряжении. Изменять напряжение переменного тока очень просто - для этого нужно использовать трансформатор. На постоянном токе сделать это значительно труднее.

Были сконструированы простые и надежные электрические двигатели переменного тока, которые очень широко используют в промышленности.

Но все это такие области применения, где переменный ток может конкурировать с постоянным. Генераторы, линии передачи и электрические двигатели могут быть выполнены и на постоянном и на переменном токе. Однако существуют такие физические явления, которые проявляются только при изменении тока.

Эти явления широко используются в радиотехнике, автоматике, электронике и т. п.

Можно сказать, что если бы не было переменного тока, не было бы и многих из этих отраслей электротехники.

В радиоприемниках, телевизорах, магнитофонах используют переменные токи и заменить их током постоянным принципиально невозможно.

Очень многие технологические процессы в промышленности также базируются на переменном токе.

Как мы уже знаем, электрический ток бывает постоянным и переменным. Но широко применяется только переменный ток. Это обусловлено тем, что напряжение и силу переменного тока можно преобразовывать практически без потерь энергии. Переменный ток получают при помощи генераторов переменного тока с использованием явлений электромагнитной индукции. На рис. 8 изображена примитивная установка для выработки переменного тока.

Рис. 8.

Принцип действия установки прост. Проволочная рамка вращается в однородном магнитном поле с постоянной скоростью. Своими концами рамка закреплена на кольцах, вращающихся вместе с ней. К кольцам плотно прилегают пружины, выполняющие роль контактов. Через поверхность рамки непрерывно будет протекать изменяющийся магнитный поток, но поток, создаваемый электромагнитом, останется постоянным. В связи с этим в рамке возникнет ЭДС индукции. Для того чтобы определить, изменяется ли магнитный поток, проходящий по поверхности рамки, нужно всего лишь сравнить положение рамки в определенные периоды времени. Для этого нужно внимательно посмотреть на рис. 9.


Рис. 9.

Точкой отсчета будет положение рамки, показанное на рис. 9, а. В этот момент плоскость рамки перпендикулярна к магнитным линиям, и магнитный поток будет иметь максимальное значение. Параллельно магнитным линиям рамка встанет через четверть периода. Магнитный поток при этом станет равным нулю, потому что ни одна магнитная линия не проходит через поверхность рамки. Чтобы определить ЭДС индукции, нужно знать не величину потока, а скорость его изменения. В точке отсчета ЭДС индукции равна нулю, а в третьем (рис. 9, в) - максимальному значению. Исходя из положений рамки, можно увидеть, что ЭДС индукции меняет и значение, и знак. Таким образом, она является переменной (см. график на рис. 9).

Если рамка имеет только активное сопротивление, то ток, который возникает в контуре под действием ЭДС индукции, с течением времени будет меняться, как и сама ЭДС. Такой ток называется переменным синусоидальным током. Периодом переменного тока называется отрезок времени, в течение которого ток выполняет одно полное колебание (эту единицу обозначают буквой Т). Число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц). В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц.

Действующие значения силы тока и напряжения

Как известно, переменная ЭДС индукции вызывает в цепи переменный ток. При наибольшем значении ЭДС сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

Амперметры и вольтметры магнитоэлектрической системы не позволяют производить замеры в цепях переменного тока. Это происходит потому, что при каждом изменении тока в катушке меняется направление вращающего момента, которое воздействует на стрелку прибора. Из-за того что катушка и стрелка обладают большой инерцией, прибор не реагирует на переменный ток. Для этих целей применяются приборы, не зависящие от направления тока. Например, это могут быть приборы, основанные на тепловом действии тока. В таких приборах стрелка поворачивается за счет удлинения нити, нагреваемой током.

Можно также применять приборы с электромагнитной системой действия. Подвижной частью в данных приспособлениях является железный диск небольшого диаметра. Он перемагничивается и втягивается внутрь катушки, через которую пропущен переменный ток. Такие приборы измеряют действующие значения силы тока и напряжения.

Катушка индуктивности и конденсатор в цели переменного тока

Особенностями переменного тока являются изменение силы и направления тока. Эти явления отличают его от постоянного тока. К примеру, при помощи переменного тока нельзя зарядить аккумулятор. Также нельзя применять его для других технических целей.

Сила переменного тока состоит в прямой зависимости не только от напряжения и сопротивления, но и индуктивности проводников, подключенных к цепи. Как правило, индуктивность существенно уменьшает силу переменного тока. В связи с тем что сопротивление цепи равно отношению напряжения к силе тока, то подключение к цепи катушки индуктивности увеличит общее сопротивление. Это произойдет вследствие наличия ЭДС самоиндукции, которая не дает току увеличиваться. Если напряжение изменяется, то сила тока просто не успевает достигнуть тех максимальных значений, которые она приобрела бы, не будь самоиндукции. Из этого вытекает, что наибольшее значение силы переменного тока ограничивается индуктивностью, т. е. чем больше будет индуктивность и частота напряжения, тем меньше будет значение силы тока.

Если в цепь постоянного тока включить батарею конденсаторов, то тока в цепи не будет, потому что пластины конденсатора отделяются друг от друга изоляционными прокладками. При наличии в цепи конденсатора постоянный ток существовать не может.

Если точно такую же батарею подсоединить к цепи переменного тока, то в ней возникнет ток. Объясняется это следующим образом. Под действием изменяющегося напряжения происходит зарядка и разрядка конденсаторов. То есть если одна обкладка конденсатора имела в течение какого-либо полупериода отрицательный заряд, то в следующий полупериод она приобретет положительный заряд. Следовательно, перезарядка конденсатора перемещает заряды по цепи. А это и есть электрический ток, который можно обнаружить при помощи амперметра. Чем больше будет перемещаемый заряд, тем больше сила тока, т. е. чем большей емкостью обладает конденсатор и чем чаще он перезаряжается, тем больше частота.

Трехфазный переменный ток

В данное время в мировой промышленной практике широко распространен трехфазный переменный ток, который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными ЭДС с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода. Каждая такая цепь называется фазой.


Рис. 10.

Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора. Пример такой системы показан на рис. 10.

Согласно вышеперечисленным условиям, выясняется, что ЭДС, возникающая во втором генераторе, не будет успевать измениться, по сравнению с ЭДС первого генератора, т. е. она будет опаздывать на 120°. ЭДС третьего генератора также будет опаздывать по отношению ко второму на 120°.

Однако такой способ получения переменного трехфазного тока весьма громоздкий и экономически невыгодный. Чтобы упростить задачу, нужно все статорные обмотки генераторов совместить в одном корпусе. Такой генератор получил название генератор трехфазного тока. Когда ротор начинает вращаться, в каждой обмотке возникает изменяющаяся ЭДС индукции. Из-за того что происходит сдвиг обмоток в пространстве, фазы колебаний в них также сдвигаются относительно друг друга на 120°.

Для того чтобы подсоединить трехфазный генератор переменного тока к цепи, нужно иметь 6 проводов. Для уменьшения количества проводов обмотки генератора и приемников нужно соединить между собой, образовав трехфазную систему. Данных соединений два: звезда и треугольник. При использовании и того и другого способа можно сэкономить электропроводку.

Соединение звездой

Обычно генератор трехфазного тока изображают в виде 3 статорных обмоток, которые располагаются друг к другу под углом 120°. Начала обмоток принято обозначать буквами А, В, С, а концы - X, Y, Z. В случае, когда концы статорных обмоток соединены в одну общую точку (нулевая точка генератора), способ соединения называется «звезда». В этом случае к началам обмоток присоединяются провода, называемые линейными (рис. 11 слева).


Рис. 11.

Точно так же можно соединять и приемники (рис. 11 справа). В этом случае провод, который соединяет нулевую точку генератора и приемников, называется нулевой. Данная система трехфазного тока имеет два разных напряжения: между линейным и нулевым проводами или, что то же самое, между началом и концом любой обмотки статора. Такая величина называется фазным напряжением (Uл). Поскольку цепь трехфазная, то линейное напряжение будет в v3 раз больше фазного, т. е.:

Uл = v3Uф

Соединение треугольником


Рис. 12.

При использовании данного способа соединения конец X первой обмотки генератора подключают к началу В второй его обмотки, конец Y второй обмотки - к началу С третьей обмотки, конец Z третьей обмотки - к началу А первой обмотки. Пример соединения показан на рис. 12. При данном способе соединения фазных обмоток и подключении трехфазного генератора к трехпроводной линии линейное напряжение по своему значению сравнивается с фазным:


Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток – отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное – в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).


Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.


Горизонтальная ось отображает угол поворота в градусах, вертикальная – величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)


Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле: . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.


Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.


Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

Переменный ток – или AC (Alternating Current ). Обозначение (~).

Электрический ток называется переменным , если он в течение времени меняет свое направление и непрерывно изменяется по величине.

Переменный ток , который используется для подключения бытовых или производственных электрических приборов, изменяется по синусоидальному закону:

i = I m sin(2πft)

График переменного тока

  • i – мгновенное значение тока
  • Im – амплитудное или наибольшее значение тока
  • f – значение частоты переменного тока
  • t – время

Широко используется переменный ток благодаря тому, что электроэнергия переменного тока технически просто и экономно может быть преобразована из энергии более низкого напряжения в энергию более высокого напряжения и наоборот. Это свойство переменного тока позволяет передавать электроэнергию по проводам на большие расстояния.


Период переменного тока

Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию.

Переменный однофазный электрический ток имеет следующие основные характеристики:

f – частота переменного тока определяет количество циклов или периодов в единицу времени. За единицу измерения частоты переменного тока принят Герц (Гц):

1гц = 10 3 кгц = 10 6 мгц

Τ – период – время одного полного изменения переменной величины.

Если в 1 секунду происходит 1 период Τ , то частота f = 1 Гц (Герц).

1c = 10 3 мс = 10 6 мкс = 10 12 нс

В Российской Федерации период Τ переменного тока принят равным 0,02 секунды,следовательно по формуле f = 1/Τ можно определить частоту переменного тока:

f = 1/0,02 = 50 Гц

ω – угловая скорость

Помимо частоты f при изучении цепей переменного тока вводится понятие угловой скорости ω . Угловая скорость ω связана с частотой f следующим соотношением:

При частоте 50 Гц угловая скорость равна 314 рад/с (2 × 3,14 × 50 = 314).

Мгновенное значение (i,u,e,p) – значение величины в данный момент, мгновенное.

Максимальное или амплитудное значение (Im,Um,Em,Pm).

Эффективное значение тока – это величина переменного тока, равная такому току, который на сопротивлении R , создаёт тепловыделение равное данному переменному току, за тоже время t (I,U,E,P).

I =
U =

Получение синусоидальной кривой

В системе декартовых прямоугольных координат совмещены тригонометрический круг и кривая, отражающая изменение величины тригонометрической функции sinβ от величины угла β между осью 0х и радиусом-вектором r . Радиус-вектор r вращается против часовой стрелки. Повернем радиус-вектор на угол β и от конца вектора r проведем пунктиром прямую, параллельную оси 0х. От окружности (точка а) по оси 0х отложим в масштабе отрезок. Из конца отрезка построим перпендикуляр до пересечения с пунктирной прямой. Получим точку с в пересечении перпендикуляра и пунктирной прямой.


Синусоида переменного тока

Аналогичное построение проведем, увеличивая угол β , пока радиус-вектор повернется на угол β = 360° , и получим точки аналогично точке с. Соединим точки плавной кривой, которая и будет отражать синусоидальный закон изменения величины переменного тока .

Понятие о фазе

Если две переменные величины одновременно проходят свои нулевые и максимальные значения, то они совпадают по фазе.

Если две переменные величины не одновременно проходят свои нулевые и максимальные значения, то они не совпадают по фазе.

В радиотехнике используются понятия:

1. Активное сопротивление (R a)

2. Индуктивное сопротивление (X L – реактивное сопротивление)

3. Ёмкостное сопротивление (X C – реактивное сопротивление)

Понятие об активном сопротивлении

Если по проводнику протекает ток, то вследствие явления самоиндукции, электроны распространяются не равномерно по сечению проводника, вследствие чего растёт сопротивление проводника.

Явление неравномерного распространения зарядов по сечению проводника называется – поверхностный эффект. Чем больше частота, тем больше сопротивление.

Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего .

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .

Стороны же в и г рамки - нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя , можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, - значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки - противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.


Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.

Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока - самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .

Период, амплитуда и частота - параметры переменного тока

Переменный ток характеризуется двумя параметрами - периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.



Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um - общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u - общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени - T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Измеряется единицей, называемой герцем.

Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока - период, амплитуду и частоту , - которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .

Круговая частота обозначается связана с частотой f соотношением 2пиf

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна 360°f.

Итак, мы пришли к выводу, что 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2пи радиан, где пи=3,14. Таким образом, окончательно получим 2пиf. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на посто янное число 6,28.



© 2024 beasthackerz.ru - Браузеры. Аудио. Жесткий диск. Программы. Локальная сеть. Windows